Efficient Associate Rules Mining Based on Topology for Items of Transactional Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/math11020401
A challenge in association rules’ mining is effectively reducing the time and space complexity in association rules mining with predefined minimum support and confidence thresholds from huge transaction databases. In this paper, we propose an efficient method based on the topology space of the itemset for mining associate rules from transaction databases. To do so, we deduce a binary relation on itemset, and construct a topology space of itemset based on the binary relation and the quotient lattice of the topology according to transactions of itemsets. Furthermore, we prove that all closed itemsets are included in the quotient lattice of the topology, and generators or minimal generators of every closed itemset can be easily obtained from an element of the quotient lattice. Formally, the topology on itemset represents more general associative relationship among items of transaction databases, the quotient lattice of the topology displays the hierarchical structures on all itemsets, and provide us a method to approximate any template of the itemset. Accordingly, we provide efficient algorithms to generate Min-Max association rules or reduce generalized association rules based on the lower approximation and the upper approximation of a template, respectively. The experiment results demonstrate that the proposed method is an alternative and efficient method to generate or reduce association rules from transaction databases.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math11020401
- https://www.mdpi.com/2227-7390/11/2/401/pdf?version=1673950087
- OA Status
- gold
- Cited By
- 2
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4316038515
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4316038515Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math11020401Digital Object Identifier
- Title
-
Efficient Associate Rules Mining Based on Topology for Items of Transactional DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-12Full publication date if available
- Authors
-
Bo Li, Zheng Pei, Chao Zhang, Fei HaoList of authors in order
- Landing page
-
https://doi.org/10.3390/math11020401Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/11/2/401/pdf?version=1673950087Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/11/2/401/pdf?version=1673950087Direct OA link when available
- Concepts
-
Association rule learning, Binary relation, Quotient, Quotient space (topology), Computer science, Database transaction, Binary number, Lattice (music), Topology (electrical circuits), Data mining, Associative property, Relation (database), Mathematics, Theoretical computer science, Database, Discrete mathematics, Combinatorics, Arithmetic, Pure mathematics, Physics, AcousticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4316038515 |
|---|---|
| doi | https://doi.org/10.3390/math11020401 |
| ids.doi | https://doi.org/10.3390/math11020401 |
| ids.openalex | https://openalex.org/W4316038515 |
| fwci | 1.23697525 |
| type | article |
| title | Efficient Associate Rules Mining Based on Topology for Items of Transactional Data |
| biblio.issue | 2 |
| biblio.volume | 11 |
| biblio.last_page | 401 |
| biblio.first_page | 401 |
| topics[0].id | https://openalex.org/T10538 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Data Mining Algorithms and Applications |
| topics[1].id | https://openalex.org/T11063 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.994700014591217 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Rough Sets and Fuzzy Logic |
| topics[2].id | https://openalex.org/T11106 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9200000166893005 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Data Management and Algorithms |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C193524817 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8590413928031921 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q386780 |
| concepts[0].display_name | Association rule learning |
| concepts[1].id | https://openalex.org/C65180967 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6611565351486206 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q130901 |
| concepts[1].display_name | Binary relation |
| concepts[2].id | https://openalex.org/C199422724 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6361346244812012 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q41118 |
| concepts[2].display_name | Quotient |
| concepts[3].id | https://openalex.org/C40753290 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6129897236824036 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1139111 |
| concepts[3].display_name | Quotient space (topology) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5581811666488647 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C75949130 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5053239464759827 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q848010 |
| concepts[5].display_name | Database transaction |
| concepts[6].id | https://openalex.org/C48372109 |
| concepts[6].level | 2 |
| concepts[6].score | 0.504470705986023 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[6].display_name | Binary number |
| concepts[7].id | https://openalex.org/C2781204021 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48280441761016846 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6497091 |
| concepts[7].display_name | Lattice (music) |
| concepts[8].id | https://openalex.org/C184720557 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48276177048683167 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7825049 |
| concepts[8].display_name | Topology (electrical circuits) |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.47390854358673096 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C159423971 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46994903683662415 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q177251 |
| concepts[10].display_name | Associative property |
| concepts[11].id | https://openalex.org/C25343380 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4486428201198578 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[11].display_name | Relation (database) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.42352205514907837 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C80444323 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3262683153152466 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[13].display_name | Theoretical computer science |
| concepts[14].id | https://openalex.org/C77088390 |
| concepts[14].level | 1 |
| concepts[14].score | 0.23610559105873108 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[14].display_name | Database |
| concepts[15].id | https://openalex.org/C118615104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.226781964302063 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[15].display_name | Discrete mathematics |
| concepts[16].id | https://openalex.org/C114614502 |
| concepts[16].level | 1 |
| concepts[16].score | 0.15353044867515564 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[16].display_name | Combinatorics |
| concepts[17].id | https://openalex.org/C94375191 |
| concepts[17].level | 1 |
| concepts[17].score | 0.08881780505180359 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[17].display_name | Arithmetic |
| concepts[18].id | https://openalex.org/C202444582 |
| concepts[18].level | 1 |
| concepts[18].score | 0.06982654333114624 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[18].display_name | Pure mathematics |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C24890656 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[20].display_name | Acoustics |
| keywords[0].id | https://openalex.org/keywords/association-rule-learning |
| keywords[0].score | 0.8590413928031921 |
| keywords[0].display_name | Association rule learning |
| keywords[1].id | https://openalex.org/keywords/binary-relation |
| keywords[1].score | 0.6611565351486206 |
| keywords[1].display_name | Binary relation |
| keywords[2].id | https://openalex.org/keywords/quotient |
| keywords[2].score | 0.6361346244812012 |
| keywords[2].display_name | Quotient |
| keywords[3].id | https://openalex.org/keywords/quotient-space |
| keywords[3].score | 0.6129897236824036 |
| keywords[3].display_name | Quotient space (topology) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5581811666488647 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/database-transaction |
| keywords[5].score | 0.5053239464759827 |
| keywords[5].display_name | Database transaction |
| keywords[6].id | https://openalex.org/keywords/binary-number |
| keywords[6].score | 0.504470705986023 |
| keywords[6].display_name | Binary number |
| keywords[7].id | https://openalex.org/keywords/lattice |
| keywords[7].score | 0.48280441761016846 |
| keywords[7].display_name | Lattice (music) |
| keywords[8].id | https://openalex.org/keywords/topology |
| keywords[8].score | 0.48276177048683167 |
| keywords[8].display_name | Topology (electrical circuits) |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.47390854358673096 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/associative-property |
| keywords[10].score | 0.46994903683662415 |
| keywords[10].display_name | Associative property |
| keywords[11].id | https://openalex.org/keywords/relation |
| keywords[11].score | 0.4486428201198578 |
| keywords[11].display_name | Relation (database) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.42352205514907837 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[13].score | 0.3262683153152466 |
| keywords[13].display_name | Theoretical computer science |
| keywords[14].id | https://openalex.org/keywords/database |
| keywords[14].score | 0.23610559105873108 |
| keywords[14].display_name | Database |
| keywords[15].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[15].score | 0.226781964302063 |
| keywords[15].display_name | Discrete mathematics |
| keywords[16].id | https://openalex.org/keywords/combinatorics |
| keywords[16].score | 0.15353044867515564 |
| keywords[16].display_name | Combinatorics |
| keywords[17].id | https://openalex.org/keywords/arithmetic |
| keywords[17].score | 0.08881780505180359 |
| keywords[17].display_name | Arithmetic |
| keywords[18].id | https://openalex.org/keywords/pure-mathematics |
| keywords[18].score | 0.06982654333114624 |
| keywords[18].display_name | Pure mathematics |
| language | en |
| locations[0].id | doi:10.3390/math11020401 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/11/2/401/pdf?version=1673950087 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math11020401 |
| locations[1].id | pmh:oai:doaj.org/article:6768216719954cd09644e74b627d3a3c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 11, Iss 2, p 401 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/6768216719954cd09644e74b627d3a3c |
| locations[2].id | pmh:oai:mdpi.com:/2227-7390/11/2/401/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Mathematics; Volume 11; Issue 2; Pages: 401 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/math11020401 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100374360 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6709-0942 |
| authorships[0].author.display_name | Bo Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102345215 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer and Software Engineering, Xihua University, Chengdu 610039, China |
| authorships[0].institutions[0].id | https://openalex.org/I102345215 |
| authorships[0].institutions[0].ror | https://ror.org/04gwtvf26 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I102345215 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xihua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bo Li |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Computer and Software Engineering, Xihua University, Chengdu 610039, China |
| authorships[1].author.id | https://openalex.org/A5046280013 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5757-6607 |
| authorships[1].author.display_name | Zheng Pei |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I102345215 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Science, Xihua University, Chengdu 610039, China |
| authorships[1].institutions[0].id | https://openalex.org/I102345215 |
| authorships[1].institutions[0].ror | https://ror.org/04gwtvf26 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I102345215 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xihua University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zheng Pei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Science, Xihua University, Chengdu 610039, China |
| authorships[2].author.id | https://openalex.org/A5100460272 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3009-598X |
| authorships[2].author.display_name | Chao Zhang |
| authorships[2].affiliations[0].raw_affiliation_string | Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College, Luzhou 646000, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chao Zhang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College, Luzhou 646000, China |
| authorships[3].author.id | https://openalex.org/A5002241280 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5288-5523 |
| authorships[3].author.display_name | Fei Hao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I88830068 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science, Shaanxi Normal University, Xi'an 710119, China |
| authorships[3].institutions[0].id | https://openalex.org/I88830068 |
| authorships[3].institutions[0].ror | https://ror.org/0170z8493 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I88830068 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shaanxi Normal University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Fei Hao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science, Shaanxi Normal University, Xi'an 710119, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/11/2/401/pdf?version=1673950087 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Associate Rules Mining Based on Topology for Items of Transactional Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10538 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Data Mining Algorithms and Applications |
| related_works | https://openalex.org/W1533029210, https://openalex.org/W2042649637, https://openalex.org/W1584507652, https://openalex.org/W2948542527, https://openalex.org/W4295535217, https://openalex.org/W2018938659, https://openalex.org/W2971957670, https://openalex.org/W1967884200, https://openalex.org/W2951131903, https://openalex.org/W2484459614 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/math11020401 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/11/2/401/pdf?version=1673950087 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math11020401 |
| primary_location.id | doi:10.3390/math11020401 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/11/2/401/pdf?version=1673950087 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math11020401 |
| publication_date | 2023-01-12 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2166559705, https://openalex.org/W1506285740, https://openalex.org/W6776943630, https://openalex.org/W2921410104, https://openalex.org/W4210760769, https://openalex.org/W4297829246, https://openalex.org/W2138034253, https://openalex.org/W2037965136, https://openalex.org/W2102297485, https://openalex.org/W2065789569, https://openalex.org/W1511277043, https://openalex.org/W1974557077, https://openalex.org/W2042020602, https://openalex.org/W2144752415, https://openalex.org/W1992119405, https://openalex.org/W2162708814, https://openalex.org/W2136078606, https://openalex.org/W2014673034, https://openalex.org/W2107962788, https://openalex.org/W2076636244, https://openalex.org/W2146502931, https://openalex.org/W2053029294, https://openalex.org/W3176910388, https://openalex.org/W2771564857, https://openalex.org/W3155840967, https://openalex.org/W3093551604, https://openalex.org/W3214816803, https://openalex.org/W3135432311, https://openalex.org/W2168911445, https://openalex.org/W2110893883, https://openalex.org/W110175884, https://openalex.org/W2095452896, https://openalex.org/W1591986277, https://openalex.org/W2066771339, https://openalex.org/W2099404336, https://openalex.org/W2171612826, https://openalex.org/W2024771073, https://openalex.org/W2037879020, https://openalex.org/W2034107870, https://openalex.org/W1991152902, https://openalex.org/W2079988171, https://openalex.org/W2153818052, https://openalex.org/W2040666511, https://openalex.org/W1987600202, https://openalex.org/W2099019567, https://openalex.org/W2031750414, https://openalex.org/W1972563279, https://openalex.org/W2080835918, https://openalex.org/W2065396117, https://openalex.org/W2029472960, https://openalex.org/W2055769371, https://openalex.org/W6704544392, https://openalex.org/W4255318870, https://openalex.org/W2570343052, https://openalex.org/W2003933544, https://openalex.org/W2041936096, https://openalex.org/W2091407427, https://openalex.org/W6631025736, https://openalex.org/W2022279933, https://openalex.org/W2090804724, https://openalex.org/W2341611239, https://openalex.org/W3021343134 |
| referenced_works_count | 62 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 57, 64, 153, 187 |
| abstract_inverted_index.In | 29 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.an | 34, 116, 199 |
| abstract_inverted_index.be | 112 |
| abstract_inverted_index.do | 53 |
| abstract_inverted_index.in | 2, 14, 95 |
| abstract_inverted_index.is | 6, 198 |
| abstract_inverted_index.of | 42, 67, 78, 84, 99, 107, 118, 134, 140, 159, 186 |
| abstract_inverted_index.on | 38, 60, 70, 125, 147, 178 |
| abstract_inverted_index.or | 104, 172, 206 |
| abstract_inverted_index.to | 82, 155, 167, 204 |
| abstract_inverted_index.us | 152 |
| abstract_inverted_index.we | 32, 55, 87, 163 |
| abstract_inverted_index.The | 190 |
| abstract_inverted_index.all | 90, 148 |
| abstract_inverted_index.and | 11, 22, 62, 74, 102, 150, 182, 201 |
| abstract_inverted_index.any | 157 |
| abstract_inverted_index.are | 93 |
| abstract_inverted_index.can | 111 |
| abstract_inverted_index.for | 45 |
| abstract_inverted_index.so, | 54 |
| abstract_inverted_index.the | 9, 39, 43, 71, 75, 79, 96, 100, 119, 123, 137, 141, 144, 160, 179, 183, 195 |
| abstract_inverted_index.from | 25, 49, 115, 210 |
| abstract_inverted_index.huge | 26 |
| abstract_inverted_index.more | 128 |
| abstract_inverted_index.that | 89, 194 |
| abstract_inverted_index.this | 30 |
| abstract_inverted_index.time | 10 |
| abstract_inverted_index.with | 18 |
| abstract_inverted_index.among | 132 |
| abstract_inverted_index.based | 37, 69, 177 |
| abstract_inverted_index.every | 108 |
| abstract_inverted_index.items | 133 |
| abstract_inverted_index.lower | 180 |
| abstract_inverted_index.prove | 88 |
| abstract_inverted_index.rules | 16, 48, 171, 176, 209 |
| abstract_inverted_index.space | 12, 41, 66 |
| abstract_inverted_index.upper | 184 |
| abstract_inverted_index.binary | 58, 72 |
| abstract_inverted_index.closed | 91, 109 |
| abstract_inverted_index.deduce | 56 |
| abstract_inverted_index.easily | 113 |
| abstract_inverted_index.method | 36, 154, 197, 203 |
| abstract_inverted_index.mining | 5, 17, 46 |
| abstract_inverted_index.paper, | 31 |
| abstract_inverted_index.reduce | 173, 207 |
| abstract_inverted_index.Min-Max | 169 |
| abstract_inverted_index.element | 117 |
| abstract_inverted_index.general | 129 |
| abstract_inverted_index.itemset | 44, 68, 110, 126 |
| abstract_inverted_index.lattice | 77, 98, 139 |
| abstract_inverted_index.minimal | 105 |
| abstract_inverted_index.minimum | 20 |
| abstract_inverted_index.propose | 33 |
| abstract_inverted_index.provide | 151, 164 |
| abstract_inverted_index.results | 192 |
| abstract_inverted_index.support | 21 |
| abstract_inverted_index.displays | 143 |
| abstract_inverted_index.generate | 168, 205 |
| abstract_inverted_index.included | 94 |
| abstract_inverted_index.itemset, | 61 |
| abstract_inverted_index.itemset. | 161 |
| abstract_inverted_index.itemsets | 92 |
| abstract_inverted_index.lattice. | 121 |
| abstract_inverted_index.obtained | 114 |
| abstract_inverted_index.proposed | 196 |
| abstract_inverted_index.quotient | 76, 97, 120, 138 |
| abstract_inverted_index.reducing | 8 |
| abstract_inverted_index.relation | 59, 73 |
| abstract_inverted_index.rules’ | 4 |
| abstract_inverted_index.template | 158 |
| abstract_inverted_index.topology | 40, 65, 80, 124, 142 |
| abstract_inverted_index.Formally, | 122 |
| abstract_inverted_index.according | 81 |
| abstract_inverted_index.associate | 47 |
| abstract_inverted_index.challenge | 1 |
| abstract_inverted_index.construct | 63 |
| abstract_inverted_index.efficient | 35, 165, 202 |
| abstract_inverted_index.itemsets, | 149 |
| abstract_inverted_index.itemsets. | 85 |
| abstract_inverted_index.template, | 188 |
| abstract_inverted_index.topology, | 101 |
| abstract_inverted_index.algorithms | 166 |
| abstract_inverted_index.complexity | 13 |
| abstract_inverted_index.confidence | 23 |
| abstract_inverted_index.databases, | 136 |
| abstract_inverted_index.databases. | 28, 51, 212 |
| abstract_inverted_index.experiment | 191 |
| abstract_inverted_index.generators | 103, 106 |
| abstract_inverted_index.predefined | 19 |
| abstract_inverted_index.represents | 127 |
| abstract_inverted_index.structures | 146 |
| abstract_inverted_index.thresholds | 24 |
| abstract_inverted_index.alternative | 200 |
| abstract_inverted_index.approximate | 156 |
| abstract_inverted_index.association | 3, 15, 170, 175, 208 |
| abstract_inverted_index.associative | 130 |
| abstract_inverted_index.demonstrate | 193 |
| abstract_inverted_index.effectively | 7 |
| abstract_inverted_index.generalized | 174 |
| abstract_inverted_index.transaction | 27, 50, 135, 211 |
| abstract_inverted_index.Accordingly, | 162 |
| abstract_inverted_index.Furthermore, | 86 |
| abstract_inverted_index.hierarchical | 145 |
| abstract_inverted_index.relationship | 131 |
| abstract_inverted_index.transactions | 83 |
| abstract_inverted_index.approximation | 181, 185 |
| abstract_inverted_index.respectively. | 189 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100460272, https://openalex.org/A5100374360 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I102345215 |
| citation_normalized_percentile.value | 0.77548914 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |