Efficient Automated Disease Diagnosis Using Machine Learning Models Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1155/2021/9983652
Recently, many researchers have designed various automated diagnosis models using various supervised learning models. An early diagnosis of disease may control the death rate due to these diseases. In this paper, an efficient automated disease diagnosis model is designed using the machine learning models. In this paper, we have selected three critical diseases such as coronavirus, heart disease, and diabetes. In the proposed model, the data are entered into an android app, the analysis is then performed in a real-time database using a pretrained machine learning model which was trained on the same dataset and deployed in firebase, and finally, the disease detection result is shown in the android app. Logistic regression is used to carry out computation for prediction. Early detection can help in identifying the risk of coronavirus, heart disease, and diabetes. Comparative analysis indicates that the proposed model can help doctors to give timely medications for treatment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2021/9983652
- https://downloads.hindawi.com/journals/jhe/2021/9983652.pdf
- OA Status
- hybrid
- Cited By
- 154
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3158436765
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3158436765Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2021/9983652Digital Object Identifier
- Title
-
Efficient Automated Disease Diagnosis Using Machine Learning ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-04Full publication date if available
- Authors
-
Naresh Kumar, Nripendra Narayan Das, Deepali Gupta, Kamali Gupta, Jatin BindraList of authors in order
- Landing page
-
https://doi.org/10.1155/2021/9983652Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/jhe/2021/9983652.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/jhe/2021/9983652.pdfDirect OA link when available
- Concepts
-
Machine learning, Computer science, Artificial intelligence, Logistic regression, Android (operating system), Disease, Medicine, Pathology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
154Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 18, 2024: 53, 2023: 54, 2022: 26, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3158436765 |
|---|---|
| doi | https://doi.org/10.1155/2021/9983652 |
| ids.doi | https://doi.org/10.1155/2021/9983652 |
| ids.mag | 3158436765 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34035886 |
| ids.openalex | https://openalex.org/W3158436765 |
| fwci | 37.49787748 |
| mesh[0].qualifier_ui | Q000175 |
| mesh[0].descriptor_ui | D000086382 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | diagnosis |
| mesh[0].descriptor_name | COVID-19 |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D003198 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Computer Simulation |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016208 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Databases, Factual |
| mesh[3].qualifier_ui | Q000175 |
| mesh[3].descriptor_ui | D003920 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | diagnosis |
| mesh[3].descriptor_name | Diabetes Mellitus |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D003936 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Diagnosis, Computer-Assisted |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D042241 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Early Diagnosis |
| mesh[6].qualifier_ui | Q000175 |
| mesh[6].descriptor_ui | D006331 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | diagnosis |
| mesh[6].descriptor_name | Heart Diseases |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D016015 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Logistic Models |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000069550 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Machine Learning |
| mesh[10].qualifier_ui | Q000175 |
| mesh[10].descriptor_ui | D000086382 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | diagnosis |
| mesh[10].descriptor_name | COVID-19 |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D003198 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Computer Simulation |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D016208 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Databases, Factual |
| mesh[13].qualifier_ui | Q000175 |
| mesh[13].descriptor_ui | D003920 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | diagnosis |
| mesh[13].descriptor_name | Diabetes Mellitus |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D003936 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Diagnosis, Computer-Assisted |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D042241 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Early Diagnosis |
| mesh[16].qualifier_ui | Q000175 |
| mesh[16].descriptor_ui | D006331 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | diagnosis |
| mesh[16].descriptor_name | Heart Diseases |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D006801 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Humans |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D016015 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Logistic Models |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000069550 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Machine Learning |
| type | article |
| title | Efficient Automated Disease Diagnosis Using Machine Learning Models |
| biblio.issue | |
| biblio.volume | 2021 |
| biblio.last_page | 13 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9939000010490417 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9855999946594238 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C119857082 |
| concepts[0].level | 1 |
| concepts[0].score | 0.773560643196106 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[0].display_name | Machine learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.709858775138855 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6615644693374634 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C151956035 |
| concepts[3].level | 2 |
| concepts[3].score | 0.557927131652832 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[3].display_name | Logistic regression |
| concepts[4].id | https://openalex.org/C557433098 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5511995553970337 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q94 |
| concepts[4].display_name | Android (operating system) |
| concepts[5].id | https://openalex.org/C2779134260 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49619656801223755 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[5].display_name | Disease |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.23221370577812195 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C142724271 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[7].display_name | Pathology |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/machine-learning |
| keywords[0].score | 0.773560643196106 |
| keywords[0].display_name | Machine learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.709858775138855 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6615644693374634 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/logistic-regression |
| keywords[3].score | 0.557927131652832 |
| keywords[3].display_name | Logistic regression |
| keywords[4].id | https://openalex.org/keywords/android |
| keywords[4].score | 0.5511995553970337 |
| keywords[4].display_name | Android (operating system) |
| keywords[5].id | https://openalex.org/keywords/disease |
| keywords[5].score | 0.49619656801223755 |
| keywords[5].display_name | Disease |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.23221370577812195 |
| keywords[6].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1155/2021/9983652 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S36625193 |
| locations[0].source.issn | 2040-2295, 2040-2309 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2040-2295 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Healthcare Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/jhe/2021/9983652.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Healthcare Engineering |
| locations[0].landing_page_url | https://doi.org/10.1155/2021/9983652 |
| locations[1].id | pmid:34035886 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of healthcare engineering |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34035886 |
| locations[2].id | pmh:oai:doaj.org/article:5c5466557f0a4ca0be9dc173c96b972b |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Journal of Healthcare Engineering, Vol 2021 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/5c5466557f0a4ca0be9dc173c96b972b |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8101482 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Healthc Eng |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8101482 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5074179418 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9984-506X |
| authorships[0].author.display_name | Naresh Kumar |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science & Engineering, Maharaja Surajmal Institute of Technology, C-4, Janakpuri, New Delhi 110058, India |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Naresh Kumar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science & Engineering, Maharaja Surajmal Institute of Technology, C-4, Janakpuri, New Delhi 110058, India |
| authorships[1].author.id | https://openalex.org/A5004575378 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7140-4879 |
| authorships[1].author.display_name | Nripendra Narayan Das |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information Technology, School of Computing and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan 303007, India |
| authorships[1].institutions[0].id | https://openalex.org/I73779912 |
| authorships[1].institutions[0].ror | https://ror.org/040h76494 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Manipal University Jaipur |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nripendra Narayan Das |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Information Technology, School of Computing and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan 303007, India |
| authorships[2].author.id | https://openalex.org/A5055907404 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3207-5248 |
| authorships[2].author.display_name | Deepali Gupta |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[2].affiliations[0].raw_affiliation_string | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India |
| authorships[2].institutions[0].id | https://openalex.org/I74319210 |
| authorships[2].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Chitkara University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Deepali Gupta |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India |
| authorships[3].author.id | https://openalex.org/A5077411474 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4219-1146 |
| authorships[3].author.display_name | Kamali Gupta |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[3].affiliations[0].raw_affiliation_string | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India |
| authorships[3].institutions[0].id | https://openalex.org/I74319210 |
| authorships[3].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Chitkara University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kamali Gupta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India |
| authorships[4].author.id | https://openalex.org/A5057190444 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jatin Bindra |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science & Engineering, Maharaja Surajmal Institute of Technology, C-4, Janakpuri, New Delhi 110058, India |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jatin Bindra |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science & Engineering, Maharaja Surajmal Institute of Technology, C-4, Janakpuri, New Delhi 110058, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/jhe/2021/9983652.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Automated Disease Diagnosis Using Machine Learning Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3209574120, https://openalex.org/W3107602296, https://openalex.org/W4312192474, https://openalex.org/W4210805261, https://openalex.org/W4387297750 |
| cited_by_count | 154 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 18 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 53 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 54 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 26 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1155/2021/9983652 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S36625193 |
| best_oa_location.source.issn | 2040-2295, 2040-2309 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2040-2295 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Healthcare Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/jhe/2021/9983652.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Healthcare Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2021/9983652 |
| primary_location.id | doi:10.1155/2021/9983652 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S36625193 |
| primary_location.source.issn | 2040-2295, 2040-2309 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2040-2295 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Healthcare Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/jhe/2021/9983652.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Healthcare Engineering |
| primary_location.landing_page_url | https://doi.org/10.1155/2021/9983652 |
| publication_date | 2021-05-04 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2664267452, https://openalex.org/W2953532875, https://openalex.org/W2140415161, https://openalex.org/W2917350099, https://openalex.org/W2915969651, https://openalex.org/W2913289332, https://openalex.org/W2807786182, https://openalex.org/W2895151730, https://openalex.org/W2896451001, https://openalex.org/W2920939565, https://openalex.org/W2981871664, https://openalex.org/W2963318081, https://openalex.org/W2955338161, https://openalex.org/W2929612105, https://openalex.org/W2921972904, https://openalex.org/W2924509255, https://openalex.org/W2886614482, https://openalex.org/W2912135847, https://openalex.org/W2993809815, https://openalex.org/W2987656958, https://openalex.org/W2998620327, https://openalex.org/W3004277316, https://openalex.org/W3130177139, https://openalex.org/W2906396551, https://openalex.org/W2895303461, https://openalex.org/W2883627447, https://openalex.org/W3027682070, https://openalex.org/W3018302085, https://openalex.org/W4238400024, https://openalex.org/W3032167364, https://openalex.org/W2983135385, https://openalex.org/W3010486176, https://openalex.org/W6774822403, https://openalex.org/W3013772641, https://openalex.org/W3016019826, https://openalex.org/W3011133285, https://openalex.org/W3009799538, https://openalex.org/W3013883100, https://openalex.org/W3014907189, https://openalex.org/W3013365852, https://openalex.org/W2920905494, https://openalex.org/W2923829929, https://openalex.org/W1541145887, https://openalex.org/W3000372470, https://openalex.org/W3003617865, https://openalex.org/W2940914354, https://openalex.org/W2939204356, https://openalex.org/W4237094347, https://openalex.org/W3015379548, https://openalex.org/W2473433566, https://openalex.org/W2996895059, https://openalex.org/W3012310845, https://openalex.org/W3092207896, https://openalex.org/W2936573766, https://openalex.org/W2738681903, https://openalex.org/W2924911266, https://openalex.org/W1971967573, https://openalex.org/W3109495579, https://openalex.org/W2900329012, https://openalex.org/W2725258829, https://openalex.org/W3008874180 |
| referenced_works_count | 61 |
| abstract_inverted_index.a | 78, 82 |
| abstract_inverted_index.An | 14 |
| abstract_inverted_index.In | 28, 44, 60 |
| abstract_inverted_index.an | 31, 69 |
| abstract_inverted_index.as | 54 |
| abstract_inverted_index.in | 77, 96, 106, 124 |
| abstract_inverted_index.is | 37, 74, 104, 112 |
| abstract_inverted_index.of | 17, 128 |
| abstract_inverted_index.on | 90 |
| abstract_inverted_index.to | 25, 114, 144 |
| abstract_inverted_index.we | 47 |
| abstract_inverted_index.and | 58, 94, 98, 132 |
| abstract_inverted_index.are | 66 |
| abstract_inverted_index.can | 122, 141 |
| abstract_inverted_index.due | 24 |
| abstract_inverted_index.for | 118, 148 |
| abstract_inverted_index.may | 19 |
| abstract_inverted_index.out | 116 |
| abstract_inverted_index.the | 21, 40, 61, 64, 72, 91, 100, 107, 126, 138 |
| abstract_inverted_index.was | 88 |
| abstract_inverted_index.app, | 71 |
| abstract_inverted_index.app. | 109 |
| abstract_inverted_index.data | 65 |
| abstract_inverted_index.give | 145 |
| abstract_inverted_index.have | 3, 48 |
| abstract_inverted_index.help | 123, 142 |
| abstract_inverted_index.into | 68 |
| abstract_inverted_index.many | 1 |
| abstract_inverted_index.rate | 23 |
| abstract_inverted_index.risk | 127 |
| abstract_inverted_index.same | 92 |
| abstract_inverted_index.such | 53 |
| abstract_inverted_index.that | 137 |
| abstract_inverted_index.then | 75 |
| abstract_inverted_index.this | 29, 45 |
| abstract_inverted_index.used | 113 |
| abstract_inverted_index.Early | 120 |
| abstract_inverted_index.carry | 115 |
| abstract_inverted_index.death | 22 |
| abstract_inverted_index.early | 15 |
| abstract_inverted_index.heart | 56, 130 |
| abstract_inverted_index.model | 36, 86, 140 |
| abstract_inverted_index.shown | 105 |
| abstract_inverted_index.these | 26 |
| abstract_inverted_index.three | 50 |
| abstract_inverted_index.using | 9, 39, 81 |
| abstract_inverted_index.which | 87 |
| abstract_inverted_index.model, | 63 |
| abstract_inverted_index.models | 8 |
| abstract_inverted_index.paper, | 30, 46 |
| abstract_inverted_index.result | 103 |
| abstract_inverted_index.timely | 146 |
| abstract_inverted_index.android | 70, 108 |
| abstract_inverted_index.control | 20 |
| abstract_inverted_index.dataset | 93 |
| abstract_inverted_index.disease | 18, 34, 101 |
| abstract_inverted_index.doctors | 143 |
| abstract_inverted_index.entered | 67 |
| abstract_inverted_index.machine | 41, 84 |
| abstract_inverted_index.models. | 13, 43 |
| abstract_inverted_index.trained | 89 |
| abstract_inverted_index.various | 5, 10 |
| abstract_inverted_index.Logistic | 110 |
| abstract_inverted_index.analysis | 73, 135 |
| abstract_inverted_index.critical | 51 |
| abstract_inverted_index.database | 80 |
| abstract_inverted_index.deployed | 95 |
| abstract_inverted_index.designed | 4, 38 |
| abstract_inverted_index.disease, | 57, 131 |
| abstract_inverted_index.diseases | 52 |
| abstract_inverted_index.finally, | 99 |
| abstract_inverted_index.learning | 12, 42, 85 |
| abstract_inverted_index.proposed | 62, 139 |
| abstract_inverted_index.selected | 49 |
| abstract_inverted_index.Recently, | 0 |
| abstract_inverted_index.automated | 6, 33 |
| abstract_inverted_index.detection | 102, 121 |
| abstract_inverted_index.diabetes. | 59, 133 |
| abstract_inverted_index.diagnosis | 7, 16, 35 |
| abstract_inverted_index.diseases. | 27 |
| abstract_inverted_index.efficient | 32 |
| abstract_inverted_index.firebase, | 97 |
| abstract_inverted_index.indicates | 136 |
| abstract_inverted_index.performed | 76 |
| abstract_inverted_index.real-time | 79 |
| abstract_inverted_index.pretrained | 83 |
| abstract_inverted_index.regression | 111 |
| abstract_inverted_index.supervised | 11 |
| abstract_inverted_index.treatment. | 149 |
| abstract_inverted_index.Comparative | 134 |
| abstract_inverted_index.computation | 117 |
| abstract_inverted_index.identifying | 125 |
| abstract_inverted_index.medications | 147 |
| abstract_inverted_index.prediction. | 119 |
| abstract_inverted_index.researchers | 2 |
| abstract_inverted_index.coronavirus, | 55, 129 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5055907404 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I74319210 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8600000143051147 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.9972592 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |