Efficient Controllable Diffusion via Optimal Classifier Guidance Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.21666
The controllable generation of diffusion models aims to steer the model to generate samples that optimize some given objective functions. It is desirable for a variety of applications including image generation, molecule generation, and DNA/sequence generation. Reinforcement Learning (RL) based fine-tuning of the base model is a popular approach but it can overfit the reward function while requiring significant resources. We frame controllable generation as a problem of finding a distribution that optimizes a KL-regularized objective function. We present SLCD -- Supervised Learning based Controllable Diffusion, which iteratively generates online data and trains a small classifier to guide the generation of the diffusion model. Similar to the standard classifier-guided diffusion, SLCD's key computation primitive is classification and does not involve any complex concepts from RL or control. Via a reduction to no-regret online learning analysis, we show that under KL divergence, the output from SLCD provably converges to the optimal solution of the KL-regularized objective. Further, we empirically demonstrate that SLCD can generate high quality samples with nearly the same inference time as the base model in both image generation with continuous diffusion and biological sequence generation with discrete diffusion. Our code is available at https://github.com/Owen-Oertell/slcd
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.21666
- https://arxiv.org/pdf/2505.21666
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416046262
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416046262Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.21666Digital Object Identifier
- Title
-
Efficient Controllable Diffusion via Optimal Classifier GuidanceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-27Full publication date if available
- Authors
-
Owen Oertell, Shikun Sun, Yiding Chen, Jin Peng Zhou, Zhiyong Wang, Wen SunList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.21666Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.21666Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.21666Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416046262 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.21666 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.21666 |
| ids.openalex | https://openalex.org/W4416046262 |
| fwci | |
| type | preprint |
| title | Efficient Controllable Diffusion via Optimal Classifier Guidance |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.21666 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.21666 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.21666 |
| locations[1].id | doi:10.48550/arxiv.2505.21666 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.21666 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5095045747 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Owen Oertell |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Oertell, Owen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101231779 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shikun Sun |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sun, Shikun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5006044524 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1759-9112 |
| authorships[2].author.display_name | Yiding Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Yiding |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5070503869 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8407-1110 |
| authorships[3].author.display_name | Jin Peng Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Jin Peng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100443922 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3574-6078 |
| authorships[4].author.display_name | Zhiyong Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Zhiyong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5032266950 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7086-4910 |
| authorships[5].author.display_name | Wen Sun |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Sun, Wen |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.21666 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Controllable Diffusion via Optimal Classifier Guidance |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T11:01:23.469902 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.21666 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.21666 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.21666 |
| primary_location.id | pmh:oai:arXiv.org:2505.21666 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.21666 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.21666 |
| publication_date | 2025-05-27 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 24, 46, 65, 69, 73, 93, 128 |
| abstract_inverted_index.-- | 80 |
| abstract_inverted_index.It | 20 |
| abstract_inverted_index.KL | 139 |
| abstract_inverted_index.RL | 124 |
| abstract_inverted_index.We | 60, 77 |
| abstract_inverted_index.as | 64, 172 |
| abstract_inverted_index.at | 194 |
| abstract_inverted_index.in | 176 |
| abstract_inverted_index.is | 21, 45, 114, 192 |
| abstract_inverted_index.it | 50 |
| abstract_inverted_index.of | 3, 26, 41, 67, 100, 151 |
| abstract_inverted_index.or | 125 |
| abstract_inverted_index.to | 7, 11, 96, 105, 130, 147 |
| abstract_inverted_index.we | 135, 156 |
| abstract_inverted_index.Our | 190 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.Via | 127 |
| abstract_inverted_index.and | 33, 91, 116, 183 |
| abstract_inverted_index.any | 120 |
| abstract_inverted_index.but | 49 |
| abstract_inverted_index.can | 51, 161 |
| abstract_inverted_index.for | 23 |
| abstract_inverted_index.key | 111 |
| abstract_inverted_index.not | 118 |
| abstract_inverted_index.the | 9, 42, 53, 98, 101, 106, 141, 148, 152, 168, 173 |
| abstract_inverted_index.(RL) | 38 |
| abstract_inverted_index.SLCD | 79, 144, 160 |
| abstract_inverted_index.aims | 6 |
| abstract_inverted_index.base | 43, 174 |
| abstract_inverted_index.both | 177 |
| abstract_inverted_index.code | 191 |
| abstract_inverted_index.data | 90 |
| abstract_inverted_index.does | 117 |
| abstract_inverted_index.from | 123, 143 |
| abstract_inverted_index.high | 163 |
| abstract_inverted_index.same | 169 |
| abstract_inverted_index.show | 136 |
| abstract_inverted_index.some | 16 |
| abstract_inverted_index.that | 14, 71, 137, 159 |
| abstract_inverted_index.time | 171 |
| abstract_inverted_index.with | 166, 180, 187 |
| abstract_inverted_index.based | 39, 83 |
| abstract_inverted_index.frame | 61 |
| abstract_inverted_index.given | 17 |
| abstract_inverted_index.guide | 97 |
| abstract_inverted_index.image | 29, 178 |
| abstract_inverted_index.model | 10, 44, 175 |
| abstract_inverted_index.small | 94 |
| abstract_inverted_index.steer | 8 |
| abstract_inverted_index.under | 138 |
| abstract_inverted_index.which | 86 |
| abstract_inverted_index.while | 56 |
| abstract_inverted_index.SLCD's | 110 |
| abstract_inverted_index.model. | 103 |
| abstract_inverted_index.models | 5 |
| abstract_inverted_index.nearly | 167 |
| abstract_inverted_index.online | 89, 132 |
| abstract_inverted_index.output | 142 |
| abstract_inverted_index.reward | 54 |
| abstract_inverted_index.trains | 92 |
| abstract_inverted_index.Similar | 104 |
| abstract_inverted_index.complex | 121 |
| abstract_inverted_index.finding | 68 |
| abstract_inverted_index.involve | 119 |
| abstract_inverted_index.optimal | 149 |
| abstract_inverted_index.overfit | 52 |
| abstract_inverted_index.popular | 47 |
| abstract_inverted_index.present | 78 |
| abstract_inverted_index.problem | 66 |
| abstract_inverted_index.quality | 164 |
| abstract_inverted_index.samples | 13, 165 |
| abstract_inverted_index.variety | 25 |
| abstract_inverted_index.Further, | 155 |
| abstract_inverted_index.Learning | 37, 82 |
| abstract_inverted_index.approach | 48 |
| abstract_inverted_index.concepts | 122 |
| abstract_inverted_index.control. | 126 |
| abstract_inverted_index.discrete | 188 |
| abstract_inverted_index.function | 55 |
| abstract_inverted_index.generate | 12, 162 |
| abstract_inverted_index.learning | 133 |
| abstract_inverted_index.molecule | 31 |
| abstract_inverted_index.optimize | 15 |
| abstract_inverted_index.provably | 145 |
| abstract_inverted_index.sequence | 185 |
| abstract_inverted_index.solution | 150 |
| abstract_inverted_index.standard | 107 |
| abstract_inverted_index.analysis, | 134 |
| abstract_inverted_index.available | 193 |
| abstract_inverted_index.converges | 146 |
| abstract_inverted_index.desirable | 22 |
| abstract_inverted_index.diffusion | 4, 102, 182 |
| abstract_inverted_index.function. | 76 |
| abstract_inverted_index.generates | 88 |
| abstract_inverted_index.including | 28 |
| abstract_inverted_index.inference | 170 |
| abstract_inverted_index.no-regret | 131 |
| abstract_inverted_index.objective | 18, 75 |
| abstract_inverted_index.optimizes | 72 |
| abstract_inverted_index.primitive | 113 |
| abstract_inverted_index.reduction | 129 |
| abstract_inverted_index.requiring | 57 |
| abstract_inverted_index.Diffusion, | 85 |
| abstract_inverted_index.Supervised | 81 |
| abstract_inverted_index.biological | 184 |
| abstract_inverted_index.classifier | 95 |
| abstract_inverted_index.continuous | 181 |
| abstract_inverted_index.diffusion, | 109 |
| abstract_inverted_index.diffusion. | 189 |
| abstract_inverted_index.functions. | 19 |
| abstract_inverted_index.generation | 2, 63, 99, 179, 186 |
| abstract_inverted_index.objective. | 154 |
| abstract_inverted_index.resources. | 59 |
| abstract_inverted_index.computation | 112 |
| abstract_inverted_index.demonstrate | 158 |
| abstract_inverted_index.divergence, | 140 |
| abstract_inverted_index.empirically | 157 |
| abstract_inverted_index.fine-tuning | 40 |
| abstract_inverted_index.generation, | 30, 32 |
| abstract_inverted_index.generation. | 35 |
| abstract_inverted_index.iteratively | 87 |
| abstract_inverted_index.significant | 58 |
| abstract_inverted_index.Controllable | 84 |
| abstract_inverted_index.DNA/sequence | 34 |
| abstract_inverted_index.applications | 27 |
| abstract_inverted_index.controllable | 1, 62 |
| abstract_inverted_index.distribution | 70 |
| abstract_inverted_index.Reinforcement | 36 |
| abstract_inverted_index.KL-regularized | 74, 153 |
| abstract_inverted_index.classification | 115 |
| abstract_inverted_index.classifier-guided | 108 |
| abstract_inverted_index.https://github.com/Owen-Oertell/slcd | 195 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |