Efficient dataset extension using generative networks for assessing degree of coating degradation around scribe Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3389/frai.2024.1456844
A novel methodology for dataset augmentation in the semantic segmentation of coil-coated surface degradation is presented in this study. Deep convolutional generative adversarial networks (DCGAN) are employed to generate synthetic input-target pairs, which closely resemble real-world data, with the goal of expanding an existing dataset. These augmented datasets are used to train two state-of-the-art models, U-net, and DeepLabV3, for the precise detection of degradation areas around scribes. In a series of experiments, it was demonstrated that the introduction of synthetic data improves the models' performance in detecting degradation, especially when the ratio of synthetic to real data is carefully managed. Results indicate that optimal improvements in accuracy and F1-score are achieved when the ratio of synthetic to original data is between 0.2 and 0.5. Moreover, the advantages and limitations of different GAN architectures for dataset expansion are explored, with specific attention to their ability to produce realistic and diverse samples. This work offers a scalable solution to the challenges associated with creating large and diverse annotated datasets for industrial applications of coil coating degradation assessment. The proposed approach provides a significant contribution by improving model generalization and segmentation accuracy while reducing the burden of manual data annotation. These findings have important implications for industries relying on coil coatings, as more efficient and accurate degradation detection methods are enabled.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/frai.2024.1456844
- https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1456844/pdf
- OA Status
- gold
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405383786
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405383786Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/frai.2024.1456844Digital Object Identifier
- Title
-
Efficient dataset extension using generative networks for assessing degree of coating degradation around scribeWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-13Full publication date if available
- Authors
-
Dominik Štursa, P Rozsíval, Petr DoleželList of authors in order
- Landing page
-
https://doi.org/10.3389/frai.2024.1456844Publisher landing page
- PDF URL
-
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1456844/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1456844/pdfDirect OA link when available
- Concepts
-
Computer science, Segmentation, Generalization, Degradation (telecommunications), Scalability, Artificial intelligence, Synthetic data, Data mining, Machine learning, Mathematics, Database, Mathematical analysis, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405383786 |
|---|---|
| doi | https://doi.org/10.3389/frai.2024.1456844 |
| ids.doi | https://doi.org/10.3389/frai.2024.1456844 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39735231 |
| ids.openalex | https://openalex.org/W4405383786 |
| fwci | 0.0 |
| type | article |
| title | Efficient dataset extension using generative networks for assessing degree of coating degradation around scribe |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 1456844 |
| biblio.first_page | 1456844 |
| topics[0].id | https://openalex.org/T12169 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9965000152587891 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Non-Destructive Testing Techniques |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9915000200271606 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| funders[0].id | https://openalex.org/F4320329548 |
| funders[0].ror | https://ror.org/01chzd453 |
| funders[0].display_name | Univerzita Pardubice |
| is_xpac | False |
| apc_list.value | 1150 |
| apc_list.currency | USD |
| apc_list.value_usd | 1150 |
| apc_paid.value | 1150 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1150 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7343426942825317 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6298866271972656 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C177148314 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6295506358146667 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[2].display_name | Generalization |
| concepts[3].id | https://openalex.org/C2779679103 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5786537528038025 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5251805 |
| concepts[3].display_name | Degradation (telecommunications) |
| concepts[4].id | https://openalex.org/C48044578 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5418499112129211 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[4].display_name | Scalability |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5097245573997498 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C160920958 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45903658866882324 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7662746 |
| concepts[6].display_name | Synthetic data |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44706374406814575 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4162033200263977 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.09639093279838562 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C77088390 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07866835594177246 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[10].display_name | Database |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7343426942825317 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6298866271972656 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/generalization |
| keywords[2].score | 0.6295506358146667 |
| keywords[2].display_name | Generalization |
| keywords[3].id | https://openalex.org/keywords/degradation |
| keywords[3].score | 0.5786537528038025 |
| keywords[3].display_name | Degradation (telecommunications) |
| keywords[4].id | https://openalex.org/keywords/scalability |
| keywords[4].score | 0.5418499112129211 |
| keywords[4].display_name | Scalability |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5097245573997498 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/synthetic-data |
| keywords[6].score | 0.45903658866882324 |
| keywords[6].display_name | Synthetic data |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.44706374406814575 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4162033200263977 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.09639093279838562 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/database |
| keywords[10].score | 0.07866835594177246 |
| keywords[10].display_name | Database |
| language | en |
| locations[0].id | doi:10.3389/frai.2024.1456844 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210197006 |
| locations[0].source.issn | 2624-8212 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2624-8212 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1456844/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.3389/frai.2024.1456844 |
| locations[1].id | pmid:39735231 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in artificial intelligence |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39735231 |
| locations[2].id | pmh:oai:doaj.org/article:09b6a5a8b8224604bebae94912c30e21 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Artificial Intelligence, Vol 7 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/09b6a5a8b8224604bebae94912c30e21 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11671473 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Artif Intell |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11671473 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5033534358 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2324-162X |
| authorships[0].author.display_name | Dominik Štursa |
| authorships[0].countries | CZ |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I140744787 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czechia |
| authorships[0].institutions[0].id | https://openalex.org/I140744787 |
| authorships[0].institutions[0].ror | https://ror.org/01chzd453 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I140744787 |
| authorships[0].institutions[0].country_code | CZ |
| authorships[0].institutions[0].display_name | University of Pardubice |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dominik Stursa |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czechia |
| authorships[1].author.id | https://openalex.org/A5025593673 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7258-9745 |
| authorships[1].author.display_name | P Rozsíval |
| authorships[1].countries | CZ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I140744787 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czechia |
| authorships[1].institutions[0].id | https://openalex.org/I140744787 |
| authorships[1].institutions[0].ror | https://ror.org/01chzd453 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I140744787 |
| authorships[1].institutions[0].country_code | CZ |
| authorships[1].institutions[0].display_name | University of Pardubice |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pavel Rozsival |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czechia |
| authorships[2].author.id | https://openalex.org/A5008067428 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7359-0764 |
| authorships[2].author.display_name | Petr Doležel |
| authorships[2].countries | CZ |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I140744787 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czechia |
| authorships[2].institutions[0].id | https://openalex.org/I140744787 |
| authorships[2].institutions[0].ror | https://ror.org/01chzd453 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I140744787 |
| authorships[2].institutions[0].country_code | CZ |
| authorships[2].institutions[0].display_name | University of Pardubice |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Petr Dolezel |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czechia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1456844/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient dataset extension using generative networks for assessing degree of coating degradation around scribe |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12169 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9965000152587891 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Non-Destructive Testing Techniques |
| related_works | https://openalex.org/W3162204513, https://openalex.org/W2389214306, https://openalex.org/W2371138613, https://openalex.org/W2965083567, https://openalex.org/W2048963458, https://openalex.org/W4235240664, https://openalex.org/W1838576100, https://openalex.org/W43109613, https://openalex.org/W2359952343, https://openalex.org/W2095886385 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/frai.2024.1456844 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210197006 |
| best_oa_location.source.issn | 2624-8212 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2624-8212 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1456844/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.3389/frai.2024.1456844 |
| primary_location.id | doi:10.3389/frai.2024.1456844 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210197006 |
| primary_location.source.issn | 2624-8212 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2624-8212 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1456844/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.3389/frai.2024.1456844 |
| publication_date | 2024-12-13 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4296640326, https://openalex.org/W3028525609, https://openalex.org/W2033602644, https://openalex.org/W4235034570, https://openalex.org/W4399765328, https://openalex.org/W6739696289, https://openalex.org/W2531409750, https://openalex.org/W2775272898, https://openalex.org/W4387914287, https://openalex.org/W1970339822, https://openalex.org/W4396742831, https://openalex.org/W2965797094, https://openalex.org/W4389990319, https://openalex.org/W2130101447, https://openalex.org/W3003301247, https://openalex.org/W6678815747, https://openalex.org/W3216522454, https://openalex.org/W4320401871, https://openalex.org/W6685352114, https://openalex.org/W6639824700, https://openalex.org/W4295290428, https://openalex.org/W2963163009, https://openalex.org/W2954996726, https://openalex.org/W4396946301, https://openalex.org/W3028328926, https://openalex.org/W2914585471, https://openalex.org/W4320525814, https://openalex.org/W4318065289, https://openalex.org/W2962793481, https://openalex.org/W2630837129, https://openalex.org/W2125389028, https://openalex.org/W4320013936, https://openalex.org/W2963684088 |
| referenced_works_count | 33 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 68, 153, 179 |
| abstract_inverted_index.In | 67 |
| abstract_inverted_index.an | 42 |
| abstract_inverted_index.as | 208 |
| abstract_inverted_index.by | 182 |
| abstract_inverted_index.in | 6, 16, 85, 105 |
| abstract_inverted_index.is | 14, 97, 119 |
| abstract_inverted_index.it | 72 |
| abstract_inverted_index.of | 10, 40, 62, 70, 78, 92, 114, 129, 170, 193 |
| abstract_inverted_index.on | 205 |
| abstract_inverted_index.to | 27, 50, 94, 116, 141, 144, 156 |
| abstract_inverted_index.0.2 | 121 |
| abstract_inverted_index.GAN | 131 |
| abstract_inverted_index.The | 175 |
| abstract_inverted_index.and | 56, 107, 122, 127, 147, 163, 186, 211 |
| abstract_inverted_index.are | 25, 48, 109, 136, 216 |
| abstract_inverted_index.for | 3, 58, 133, 167, 202 |
| abstract_inverted_index.the | 7, 38, 59, 76, 82, 90, 112, 125, 157, 191 |
| abstract_inverted_index.two | 52 |
| abstract_inverted_index.was | 73 |
| abstract_inverted_index.0.5. | 123 |
| abstract_inverted_index.Deep | 19 |
| abstract_inverted_index.This | 150 |
| abstract_inverted_index.coil | 171, 206 |
| abstract_inverted_index.data | 80, 96, 118, 195 |
| abstract_inverted_index.goal | 39 |
| abstract_inverted_index.have | 199 |
| abstract_inverted_index.more | 209 |
| abstract_inverted_index.real | 95 |
| abstract_inverted_index.that | 75, 102 |
| abstract_inverted_index.this | 17 |
| abstract_inverted_index.used | 49 |
| abstract_inverted_index.when | 89, 111 |
| abstract_inverted_index.with | 37, 138, 160 |
| abstract_inverted_index.work | 151 |
| abstract_inverted_index.These | 45, 197 |
| abstract_inverted_index.areas | 64 |
| abstract_inverted_index.data, | 36 |
| abstract_inverted_index.large | 162 |
| abstract_inverted_index.model | 184 |
| abstract_inverted_index.novel | 1 |
| abstract_inverted_index.ratio | 91, 113 |
| abstract_inverted_index.their | 142 |
| abstract_inverted_index.train | 51 |
| abstract_inverted_index.which | 32 |
| abstract_inverted_index.while | 189 |
| abstract_inverted_index.U-net, | 55 |
| abstract_inverted_index.around | 65 |
| abstract_inverted_index.burden | 192 |
| abstract_inverted_index.manual | 194 |
| abstract_inverted_index.offers | 152 |
| abstract_inverted_index.pairs, | 31 |
| abstract_inverted_index.series | 69 |
| abstract_inverted_index.study. | 18 |
| abstract_inverted_index.(DCGAN) | 24 |
| abstract_inverted_index.Results | 100 |
| abstract_inverted_index.ability | 143 |
| abstract_inverted_index.between | 120 |
| abstract_inverted_index.closely | 33 |
| abstract_inverted_index.coating | 172 |
| abstract_inverted_index.dataset | 4, 134 |
| abstract_inverted_index.diverse | 148, 164 |
| abstract_inverted_index.methods | 215 |
| abstract_inverted_index.models' | 83 |
| abstract_inverted_index.models, | 54 |
| abstract_inverted_index.optimal | 103 |
| abstract_inverted_index.precise | 60 |
| abstract_inverted_index.produce | 145 |
| abstract_inverted_index.relying | 204 |
| abstract_inverted_index.surface | 12 |
| abstract_inverted_index.F1-score | 108 |
| abstract_inverted_index.accuracy | 106, 188 |
| abstract_inverted_index.accurate | 212 |
| abstract_inverted_index.achieved | 110 |
| abstract_inverted_index.approach | 177 |
| abstract_inverted_index.creating | 161 |
| abstract_inverted_index.dataset. | 44 |
| abstract_inverted_index.datasets | 47, 166 |
| abstract_inverted_index.employed | 26 |
| abstract_inverted_index.enabled. | 217 |
| abstract_inverted_index.existing | 43 |
| abstract_inverted_index.findings | 198 |
| abstract_inverted_index.generate | 28 |
| abstract_inverted_index.improves | 81 |
| abstract_inverted_index.indicate | 101 |
| abstract_inverted_index.managed. | 99 |
| abstract_inverted_index.networks | 23 |
| abstract_inverted_index.original | 117 |
| abstract_inverted_index.proposed | 176 |
| abstract_inverted_index.provides | 178 |
| abstract_inverted_index.reducing | 190 |
| abstract_inverted_index.resemble | 34 |
| abstract_inverted_index.samples. | 149 |
| abstract_inverted_index.scalable | 154 |
| abstract_inverted_index.scribes. | 66 |
| abstract_inverted_index.semantic | 8 |
| abstract_inverted_index.solution | 155 |
| abstract_inverted_index.specific | 139 |
| abstract_inverted_index.Moreover, | 124 |
| abstract_inverted_index.annotated | 165 |
| abstract_inverted_index.attention | 140 |
| abstract_inverted_index.augmented | 46 |
| abstract_inverted_index.carefully | 98 |
| abstract_inverted_index.coatings, | 207 |
| abstract_inverted_index.detecting | 86 |
| abstract_inverted_index.detection | 61, 214 |
| abstract_inverted_index.different | 130 |
| abstract_inverted_index.efficient | 210 |
| abstract_inverted_index.expanding | 41 |
| abstract_inverted_index.expansion | 135 |
| abstract_inverted_index.explored, | 137 |
| abstract_inverted_index.important | 200 |
| abstract_inverted_index.improving | 183 |
| abstract_inverted_index.presented | 15 |
| abstract_inverted_index.realistic | 146 |
| abstract_inverted_index.synthetic | 29, 79, 93, 115 |
| abstract_inverted_index.DeepLabV3, | 57 |
| abstract_inverted_index.advantages | 126 |
| abstract_inverted_index.associated | 159 |
| abstract_inverted_index.challenges | 158 |
| abstract_inverted_index.especially | 88 |
| abstract_inverted_index.generative | 21 |
| abstract_inverted_index.industrial | 168 |
| abstract_inverted_index.industries | 203 |
| abstract_inverted_index.real-world | 35 |
| abstract_inverted_index.adversarial | 22 |
| abstract_inverted_index.annotation. | 196 |
| abstract_inverted_index.assessment. | 174 |
| abstract_inverted_index.coil-coated | 11 |
| abstract_inverted_index.degradation | 13, 63, 173, 213 |
| abstract_inverted_index.limitations | 128 |
| abstract_inverted_index.methodology | 2 |
| abstract_inverted_index.performance | 84 |
| abstract_inverted_index.significant | 180 |
| abstract_inverted_index.applications | 169 |
| abstract_inverted_index.augmentation | 5 |
| abstract_inverted_index.contribution | 181 |
| abstract_inverted_index.degradation, | 87 |
| abstract_inverted_index.demonstrated | 74 |
| abstract_inverted_index.experiments, | 71 |
| abstract_inverted_index.implications | 201 |
| abstract_inverted_index.improvements | 104 |
| abstract_inverted_index.input-target | 30 |
| abstract_inverted_index.introduction | 77 |
| abstract_inverted_index.segmentation | 9, 187 |
| abstract_inverted_index.architectures | 132 |
| abstract_inverted_index.convolutional | 20 |
| abstract_inverted_index.generalization | 185 |
| abstract_inverted_index.state-of-the-art | 53 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5008067428 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I140744787 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.30787513 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |