Efficient Deep Learning Based Hybrid Model to Detect Obstructive Sleep Apnea Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/s23104692
An increasing number of patients and a lack of awareness about obstructive sleep apnea is a point of concern for the healthcare industry. Polysomnography is recommended by health experts to detect obstructive sleep apnea. The patient is paired up with devices that track patterns and activities during their sleep. Polysomnography, being a complex and expensive process, cannot be adopted by the majority of patients. Therefore, an alternative is required. The researchers devised various machine learning algorithms using single lead signals such as electrocardiogram, oxygen saturation, etc., for the detection of obstructive sleep apnea. These methods have low accuracy, less reliability, and high computation time. Thus, the authors introduced two different paradigms for the detection of obstructive sleep apnea. The first is MobileNet V1, and the other is the convergence of MobileNet V1 with two separate recurrent neural networks, Long-Short Term Memory and Gated Recurrent Unit. They evaluate the efficacy of their proposed method using authentic medical cases from the PhysioNet Apnea-Electrocardiogram database. The model MobileNet V1 achieves an accuracy of 89.5%, a convergence of MobileNet V1 with LSTM achieves an accuracy of 90%, and a convergence of MobileNet V1 with GRU achieves an accuracy of 90.29%. The obtained results prove the supremacy of the proposed approach in comparison to the state-of-the-art methods. To showcase the implementation of devised methods in a real-life scenario, the authors design a wearable device that monitors ECG signals and classifies them into apnea and normal. The device employs a security mechanism to transmit the ECG signals securely over the cloud with the consent of patients.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s23104692
- https://www.mdpi.com/1424-8220/23/10/4692/pdf?version=1683882700
- OA Status
- gold
- Cited By
- 27
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4376275175
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4376275175Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s23104692Digital Object Identifier
- Title
-
Efficient Deep Learning Based Hybrid Model to Detect Obstructive Sleep ApneaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-12Full publication date if available
- Authors
-
Prashant Hemrajani, Vijaypal Singh Dhaka, Geeta Rani, Praveen Kumar Shukla, Durga Prasad BavirisettiList of authors in order
- Landing page
-
https://doi.org/10.3390/s23104692Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/23/10/4692/pdf?version=1683882700Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/23/10/4692/pdf?version=1683882700Direct OA link when available
- Concepts
-
Polysomnography, Obstructive sleep apnea, Computer science, Deep learning, Convergence (economics), Wearable computer, Artificial intelligence, Apnea, Sleep apnea, Machine learning, Sleep (system call), Medicine, Embedded system, Cardiology, Internal medicine, Economics, Operating system, Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
27Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15, 2024: 10, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4376275175 |
|---|---|
| doi | https://doi.org/10.3390/s23104692 |
| ids.doi | https://doi.org/10.3390/s23104692 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37430605 |
| ids.openalex | https://openalex.org/W4376275175 |
| fwci | 8.03243693 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D015203 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Reproducibility of Results |
| mesh[3].qualifier_ui | Q000175 |
| mesh[3].descriptor_ui | D020181 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | diagnosis |
| mesh[3].descriptor_name | Sleep Apnea, Obstructive |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D012890 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Sleep |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000465 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Algorithms |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000077321 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Deep Learning |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D015203 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Reproducibility of Results |
| mesh[9].qualifier_ui | Q000175 |
| mesh[9].descriptor_ui | D020181 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | diagnosis |
| mesh[9].descriptor_name | Sleep Apnea, Obstructive |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D012890 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Sleep |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000465 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Algorithms |
| type | article |
| title | Efficient Deep Learning Based Hybrid Model to Detect Obstructive Sleep Apnea |
| biblio.issue | 10 |
| biblio.volume | 23 |
| biblio.last_page | 4692 |
| biblio.first_page | 4692 |
| topics[0].id | https://openalex.org/T10234 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2737 |
| topics[0].subfield.display_name | Physiology |
| topics[0].display_name | Obstructive Sleep Apnea Research |
| topics[1].id | https://openalex.org/T11196 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9846000075340271 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Non-Invasive Vital Sign Monitoring |
| topics[2].id | https://openalex.org/T11373 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9794999957084656 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3205 |
| topics[2].subfield.display_name | Experimental and Cognitive Psychology |
| topics[2].display_name | Sleep and Work-Related Fatigue |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C2778205975 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7992556095123291 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1754874 |
| concepts[0].display_name | Polysomnography |
| concepts[1].id | https://openalex.org/C2776006263 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7652671337127686 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q16606552 |
| concepts[1].display_name | Obstructive sleep apnea |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7519692182540894 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5727407336235046 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C2777303404 |
| concepts[4].level | 2 |
| concepts[4].score | 0.546997606754303 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[4].display_name | Convergence (economics) |
| concepts[5].id | https://openalex.org/C150594956 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5450475811958313 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1334829 |
| concepts[5].display_name | Wearable computer |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5449730753898621 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2781326671 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5408843159675598 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q754424 |
| concepts[7].display_name | Apnea |
| concepts[8].id | https://openalex.org/C2777935920 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5298005938529968 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q213600 |
| concepts[8].display_name | Sleep apnea |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.47979384660720825 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C2775841894 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45062947273254395 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4683692 |
| concepts[10].display_name | Sleep (system call) |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.22613191604614258 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C149635348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.15209051966667175 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[12].display_name | Embedded system |
| concepts[13].id | https://openalex.org/C164705383 |
| concepts[13].level | 1 |
| concepts[13].score | 0.12728658318519592 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[13].display_name | Cardiology |
| concepts[14].id | https://openalex.org/C126322002 |
| concepts[14].level | 1 |
| concepts[14].score | 0.09409499168395996 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[14].display_name | Internal medicine |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C50522688 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[17].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/polysomnography |
| keywords[0].score | 0.7992556095123291 |
| keywords[0].display_name | Polysomnography |
| keywords[1].id | https://openalex.org/keywords/obstructive-sleep-apnea |
| keywords[1].score | 0.7652671337127686 |
| keywords[1].display_name | Obstructive sleep apnea |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7519692182540894 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.5727407336235046 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/convergence |
| keywords[4].score | 0.546997606754303 |
| keywords[4].display_name | Convergence (economics) |
| keywords[5].id | https://openalex.org/keywords/wearable-computer |
| keywords[5].score | 0.5450475811958313 |
| keywords[5].display_name | Wearable computer |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5449730753898621 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/apnea |
| keywords[7].score | 0.5408843159675598 |
| keywords[7].display_name | Apnea |
| keywords[8].id | https://openalex.org/keywords/sleep-apnea |
| keywords[8].score | 0.5298005938529968 |
| keywords[8].display_name | Sleep apnea |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.47979384660720825 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/sleep |
| keywords[10].score | 0.45062947273254395 |
| keywords[10].display_name | Sleep (system call) |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.22613191604614258 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/embedded-system |
| keywords[12].score | 0.15209051966667175 |
| keywords[12].display_name | Embedded system |
| keywords[13].id | https://openalex.org/keywords/cardiology |
| keywords[13].score | 0.12728658318519592 |
| keywords[13].display_name | Cardiology |
| keywords[14].id | https://openalex.org/keywords/internal-medicine |
| keywords[14].score | 0.09409499168395996 |
| keywords[14].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.3390/s23104692 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/23/10/4692/pdf?version=1683882700 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s23104692 |
| locations[1].id | pmid:37430605 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37430605 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10224467 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10224467/pdf/sensors-23-04692.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10224467 |
| locations[3].id | pmh:oai:doaj.org/article:d01f5668f36c46ffaa17ae6e7def65a6 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 23, Iss 10, p 4692 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/d01f5668f36c46ffaa17ae6e7def65a6 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/23/10/4692/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 23; Issue 10; Pages: 4692 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s23104692 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5007943279 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Prashant Hemrajani |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[0].affiliations[0].raw_affiliation_string | Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India |
| authorships[0].institutions[0].id | https://openalex.org/I73779912 |
| authorships[0].institutions[0].ror | https://ror.org/040h76494 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Manipal University Jaipur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Prashant Hemrajani |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India |
| authorships[1].author.id | https://openalex.org/A5108541054 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Vijaypal Singh Dhaka |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[1].affiliations[0].raw_affiliation_string | Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India |
| authorships[1].institutions[0].id | https://openalex.org/I73779912 |
| authorships[1].institutions[0].ror | https://ror.org/040h76494 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Manipal University Jaipur |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vijaypal Singh Dhaka |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India |
| authorships[2].author.id | https://openalex.org/A5028866048 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5786-2504 |
| authorships[2].author.display_name | Geeta Rani |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[2].affiliations[0].raw_affiliation_string | Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India |
| authorships[2].institutions[0].id | https://openalex.org/I73779912 |
| authorships[2].institutions[0].ror | https://ror.org/040h76494 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Manipal University Jaipur |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Geeta Rani |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India |
| authorships[3].author.id | https://openalex.org/A5044707280 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9227-8856 |
| authorships[3].author.display_name | Praveen Kumar Shukla |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[3].affiliations[0].raw_affiliation_string | Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India |
| authorships[3].institutions[0].id | https://openalex.org/I73779912 |
| authorships[3].institutions[0].ror | https://ror.org/040h76494 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Manipal University Jaipur |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Praveen Shukla |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India |
| authorships[4].author.id | https://openalex.org/A5060788206 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9743-1701 |
| authorships[4].author.display_name | Durga Prasad Bavirisetti |
| authorships[4].countries | NO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, Norwegian University of Science and Technology, 7034 Trondheim, Norway |
| authorships[4].institutions[0].id | https://openalex.org/I204778367 |
| authorships[4].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[4].institutions[0].country_code | NO |
| authorships[4].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Durga Prasad Bavirisetti |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Computer Science, Norwegian University of Science and Technology, 7034 Trondheim, Norway |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/23/10/4692/pdf?version=1683882700 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Deep Learning Based Hybrid Model to Detect Obstructive Sleep Apnea |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10234 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2737 |
| primary_topic.subfield.display_name | Physiology |
| primary_topic.display_name | Obstructive Sleep Apnea Research |
| related_works | https://openalex.org/W3004206652, https://openalex.org/W2016370421, https://openalex.org/W4200607786, https://openalex.org/W2186303850, https://openalex.org/W4381597394, https://openalex.org/W4310009901, https://openalex.org/W2985785409, https://openalex.org/W1481679924, https://openalex.org/W2322198899, https://openalex.org/W2268943783 |
| cited_by_count | 27 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s23104692 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/23/10/4692/pdf?version=1683882700 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s23104692 |
| primary_location.id | doi:10.3390/s23104692 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/23/10/4692/pdf?version=1683882700 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s23104692 |
| publication_date | 2023-05-12 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6809017501, https://openalex.org/W4241718126, https://openalex.org/W4220686199, https://openalex.org/W2326301338, https://openalex.org/W3100788345, https://openalex.org/W2787964244, https://openalex.org/W2343482910, https://openalex.org/W3134182943, https://openalex.org/W2944265983, https://openalex.org/W2791025763, https://openalex.org/W3034824783, https://openalex.org/W2922189800, https://openalex.org/W2045259847, https://openalex.org/W3197346655, https://openalex.org/W6782210945, https://openalex.org/W2797898470, https://openalex.org/W2952608122, https://openalex.org/W2982636158, https://openalex.org/W2747993267, https://openalex.org/W2995957777, https://openalex.org/W3030209620, https://openalex.org/W2965929617, https://openalex.org/W1991165771, https://openalex.org/W1522301498, https://openalex.org/W2340278258, https://openalex.org/W2108691203, https://openalex.org/W2985634329, https://openalex.org/W2898262985, https://openalex.org/W3173369353, https://openalex.org/W2914337210, https://openalex.org/W3014364594, https://openalex.org/W3212555642, https://openalex.org/W3156313549, https://openalex.org/W2151317568, https://openalex.org/W2058580716, https://openalex.org/W2076063813, https://openalex.org/W2064675550, https://openalex.org/W2055163496, https://openalex.org/W2979610410, https://openalex.org/W2966674791, https://openalex.org/W2116825089, https://openalex.org/W4378965742, https://openalex.org/W3119651685, https://openalex.org/W3053117764, https://openalex.org/W2162800060 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 6, 15, 51, 171, 184, 220, 226, 243 |
| abstract_inverted_index.An | 0 |
| abstract_inverted_index.To | 212 |
| abstract_inverted_index.V1 | 131, 165, 175, 188 |
| abstract_inverted_index.an | 65, 167, 179, 192 |
| abstract_inverted_index.as | 81 |
| abstract_inverted_index.be | 57 |
| abstract_inverted_index.by | 26, 59 |
| abstract_inverted_index.in | 206, 219 |
| abstract_inverted_index.is | 14, 24, 36, 67, 120, 126 |
| abstract_inverted_index.of | 3, 8, 17, 62, 89, 114, 129, 149, 169, 173, 181, 186, 194, 202, 216, 258 |
| abstract_inverted_index.to | 29, 208, 246 |
| abstract_inverted_index.up | 38 |
| abstract_inverted_index.ECG | 231, 249 |
| abstract_inverted_index.GRU | 190 |
| abstract_inverted_index.The | 34, 69, 118, 162, 196, 240 |
| abstract_inverted_index.V1, | 122 |
| abstract_inverted_index.and | 5, 44, 53, 100, 123, 141, 183, 233, 238 |
| abstract_inverted_index.for | 19, 86, 111 |
| abstract_inverted_index.low | 96 |
| abstract_inverted_index.the | 20, 60, 87, 105, 112, 124, 127, 147, 158, 200, 203, 209, 214, 223, 248, 253, 256 |
| abstract_inverted_index.two | 108, 133 |
| abstract_inverted_index.90%, | 182 |
| abstract_inverted_index.LSTM | 177 |
| abstract_inverted_index.Term | 139 |
| abstract_inverted_index.They | 145 |
| abstract_inverted_index.from | 157 |
| abstract_inverted_index.have | 95 |
| abstract_inverted_index.high | 101 |
| abstract_inverted_index.into | 236 |
| abstract_inverted_index.lack | 7 |
| abstract_inverted_index.lead | 78 |
| abstract_inverted_index.less | 98 |
| abstract_inverted_index.over | 252 |
| abstract_inverted_index.such | 80 |
| abstract_inverted_index.that | 41, 229 |
| abstract_inverted_index.them | 235 |
| abstract_inverted_index.with | 39, 132, 176, 189, 255 |
| abstract_inverted_index.Gated | 142 |
| abstract_inverted_index.These | 93 |
| abstract_inverted_index.Thus, | 104 |
| abstract_inverted_index.Unit. | 144 |
| abstract_inverted_index.about | 10 |
| abstract_inverted_index.apnea | 13, 237 |
| abstract_inverted_index.being | 50 |
| abstract_inverted_index.cases | 156 |
| abstract_inverted_index.cloud | 254 |
| abstract_inverted_index.etc., | 85 |
| abstract_inverted_index.first | 119 |
| abstract_inverted_index.model | 163 |
| abstract_inverted_index.other | 125 |
| abstract_inverted_index.point | 16 |
| abstract_inverted_index.prove | 199 |
| abstract_inverted_index.sleep | 12, 32, 91, 116 |
| abstract_inverted_index.their | 47, 150 |
| abstract_inverted_index.time. | 103 |
| abstract_inverted_index.track | 42 |
| abstract_inverted_index.using | 76, 153 |
| abstract_inverted_index.89.5%, | 170 |
| abstract_inverted_index.Memory | 140 |
| abstract_inverted_index.apnea. | 33, 92, 117 |
| abstract_inverted_index.cannot | 56 |
| abstract_inverted_index.design | 225 |
| abstract_inverted_index.detect | 30 |
| abstract_inverted_index.device | 228, 241 |
| abstract_inverted_index.during | 46 |
| abstract_inverted_index.health | 27 |
| abstract_inverted_index.method | 152 |
| abstract_inverted_index.neural | 136 |
| abstract_inverted_index.number | 2 |
| abstract_inverted_index.oxygen | 83 |
| abstract_inverted_index.paired | 37 |
| abstract_inverted_index.single | 77 |
| abstract_inverted_index.sleep. | 48 |
| abstract_inverted_index.90.29%. | 195 |
| abstract_inverted_index.adopted | 58 |
| abstract_inverted_index.authors | 106, 224 |
| abstract_inverted_index.complex | 52 |
| abstract_inverted_index.concern | 18 |
| abstract_inverted_index.consent | 257 |
| abstract_inverted_index.devices | 40 |
| abstract_inverted_index.devised | 71, 217 |
| abstract_inverted_index.employs | 242 |
| abstract_inverted_index.experts | 28 |
| abstract_inverted_index.machine | 73 |
| abstract_inverted_index.medical | 155 |
| abstract_inverted_index.methods | 94, 218 |
| abstract_inverted_index.normal. | 239 |
| abstract_inverted_index.patient | 35 |
| abstract_inverted_index.results | 198 |
| abstract_inverted_index.signals | 79, 232, 250 |
| abstract_inverted_index.various | 72 |
| abstract_inverted_index.accuracy | 168, 180, 193 |
| abstract_inverted_index.achieves | 166, 178, 191 |
| abstract_inverted_index.approach | 205 |
| abstract_inverted_index.efficacy | 148 |
| abstract_inverted_index.evaluate | 146 |
| abstract_inverted_index.learning | 74 |
| abstract_inverted_index.majority | 61 |
| abstract_inverted_index.methods. | 211 |
| abstract_inverted_index.monitors | 230 |
| abstract_inverted_index.obtained | 197 |
| abstract_inverted_index.patients | 4 |
| abstract_inverted_index.patterns | 43 |
| abstract_inverted_index.process, | 55 |
| abstract_inverted_index.proposed | 151, 204 |
| abstract_inverted_index.securely | 251 |
| abstract_inverted_index.security | 244 |
| abstract_inverted_index.separate | 134 |
| abstract_inverted_index.showcase | 213 |
| abstract_inverted_index.transmit | 247 |
| abstract_inverted_index.wearable | 227 |
| abstract_inverted_index.MobileNet | 121, 130, 164, 174, 187 |
| abstract_inverted_index.PhysioNet | 159 |
| abstract_inverted_index.Recurrent | 143 |
| abstract_inverted_index.accuracy, | 97 |
| abstract_inverted_index.authentic | 154 |
| abstract_inverted_index.awareness | 9 |
| abstract_inverted_index.database. | 161 |
| abstract_inverted_index.detection | 88, 113 |
| abstract_inverted_index.different | 109 |
| abstract_inverted_index.expensive | 54 |
| abstract_inverted_index.industry. | 22 |
| abstract_inverted_index.mechanism | 245 |
| abstract_inverted_index.networks, | 137 |
| abstract_inverted_index.paradigms | 110 |
| abstract_inverted_index.patients. | 63, 259 |
| abstract_inverted_index.real-life | 221 |
| abstract_inverted_index.recurrent | 135 |
| abstract_inverted_index.required. | 68 |
| abstract_inverted_index.scenario, | 222 |
| abstract_inverted_index.supremacy | 201 |
| abstract_inverted_index.Long-Short | 138 |
| abstract_inverted_index.Therefore, | 64 |
| abstract_inverted_index.activities | 45 |
| abstract_inverted_index.algorithms | 75 |
| abstract_inverted_index.classifies | 234 |
| abstract_inverted_index.comparison | 207 |
| abstract_inverted_index.healthcare | 21 |
| abstract_inverted_index.increasing | 1 |
| abstract_inverted_index.introduced | 107 |
| abstract_inverted_index.alternative | 66 |
| abstract_inverted_index.computation | 102 |
| abstract_inverted_index.convergence | 128, 172, 185 |
| abstract_inverted_index.obstructive | 11, 31, 90, 115 |
| abstract_inverted_index.recommended | 25 |
| abstract_inverted_index.researchers | 70 |
| abstract_inverted_index.saturation, | 84 |
| abstract_inverted_index.reliability, | 99 |
| abstract_inverted_index.implementation | 215 |
| abstract_inverted_index.Polysomnography | 23 |
| abstract_inverted_index.Polysomnography, | 49 |
| abstract_inverted_index.state-of-the-art | 210 |
| abstract_inverted_index.electrocardiogram, | 82 |
| abstract_inverted_index.Apnea-Electrocardiogram | 160 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5060788206 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I204778367 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.96811155 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |