Efficient Deformable ConvNets: Rethinking Dynamic and Sparse Operator for Vision Applications Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.06197
We introduce Deformable Convolution v4 (DCNv4), a highly efficient and effective operator designed for a broad spectrum of vision applications. DCNv4 addresses the limitations of its predecessor, DCNv3, with two key enhancements: 1. removing softmax normalization in spatial aggregation to enhance its dynamic property and expressive power and 2. optimizing memory access to minimize redundant operations for speedup. These improvements result in a significantly faster convergence compared to DCNv3 and a substantial increase in processing speed, with DCNv4 achieving more than three times the forward speed. DCNv4 demonstrates exceptional performance across various tasks, including image classification, instance and semantic segmentation, and notably, image generation. When integrated into generative models like U-Net in the latent diffusion model, DCNv4 outperforms its baseline, underscoring its possibility to enhance generative models. In practical applications, replacing DCNv3 with DCNv4 in the InternImage model to create FlashInternImage results in up to 80% speed increase and further performance improvement without further modifications. The advancements in speed and efficiency of DCNv4, combined with its robust performance across diverse vision tasks, show its potential as a foundational building block for future vision models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.06197
- https://arxiv.org/pdf/2401.06197
- OA Status
- green
- Cited By
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390897321
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390897321Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.06197Digital Object Identifier
- Title
-
Efficient Deformable ConvNets: Rethinking Dynamic and Sparse Operator for Vision ApplicationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-11Full publication date if available
- Authors
-
Yuwen Xiong, Zhiqi Li, Yuntao Chen, Feng Wang, Xizhou Zhu, Jiapeng Luo, Wenhai Wang, Tong Lü, Hongsheng Li, Yu Qiao, Lewei Lu, Jie Zhou, Jifeng DaiList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.06197Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.06197Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.06197Direct OA link when available
- Concepts
-
Speedup, Computer science, Softmax function, Artificial intelligence, Block (permutation group theory), Operator (biology), Normalization (sociology), Performance improvement, Generative model, Machine learning, Computer vision, Generative grammar, Deep learning, Parallel computing, Operations management, Repressor, Anthropology, Chemistry, Geometry, Mathematics, Biochemistry, Transcription factor, Economics, Gene, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390897321 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.06197 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.06197 |
| ids.openalex | https://openalex.org/W4390897321 |
| fwci | |
| type | preprint |
| title | Efficient Deformable ConvNets: Rethinking Dynamic and Sparse Operator for Vision Applications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9943000078201294 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C68339613 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8497605323791504 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[0].display_name | Speedup |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.805129885673523 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C188441871 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7577035427093506 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7554146 |
| concepts[2].display_name | Softmax function |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.497997522354126 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2777210771 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47114983201026917 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[4].display_name | Block (permutation group theory) |
| concepts[5].id | https://openalex.org/C17020691 |
| concepts[5].level | 5 |
| concepts[5].score | 0.43885916471481323 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[5].display_name | Operator (biology) |
| concepts[6].id | https://openalex.org/C136886441 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42511457204818726 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[6].display_name | Normalization (sociology) |
| concepts[7].id | https://openalex.org/C2778915421 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4238213002681732 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3643177 |
| concepts[7].display_name | Performance improvement |
| concepts[8].id | https://openalex.org/C167966045 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41874960064888 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[8].display_name | Generative model |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37738850712776184 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32760319113731384 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C39890363 |
| concepts[11].level | 2 |
| concepts[11].score | 0.29964447021484375 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[11].display_name | Generative grammar |
| concepts[12].id | https://openalex.org/C108583219 |
| concepts[12].level | 2 |
| concepts[12].score | 0.24680376052856445 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep learning |
| concepts[13].id | https://openalex.org/C173608175 |
| concepts[13].level | 1 |
| concepts[13].score | 0.14250493049621582 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[13].display_name | Parallel computing |
| concepts[14].id | https://openalex.org/C21547014 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[14].display_name | Operations management |
| concepts[15].id | https://openalex.org/C158448853 |
| concepts[15].level | 4 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[15].display_name | Repressor |
| concepts[16].id | https://openalex.org/C19165224 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[16].display_name | Anthropology |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C2524010 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[18].display_name | Geometry |
| concepts[19].id | https://openalex.org/C33923547 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[19].display_name | Mathematics |
| concepts[20].id | https://openalex.org/C55493867 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[20].display_name | Biochemistry |
| concepts[21].id | https://openalex.org/C86339819 |
| concepts[21].level | 3 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[21].display_name | Transcription factor |
| concepts[22].id | https://openalex.org/C162324750 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[22].display_name | Economics |
| concepts[23].id | https://openalex.org/C104317684 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[23].display_name | Gene |
| concepts[24].id | https://openalex.org/C144024400 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[24].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/speedup |
| keywords[0].score | 0.8497605323791504 |
| keywords[0].display_name | Speedup |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.805129885673523 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/softmax-function |
| keywords[2].score | 0.7577035427093506 |
| keywords[2].display_name | Softmax function |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.497997522354126 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/block |
| keywords[4].score | 0.47114983201026917 |
| keywords[4].display_name | Block (permutation group theory) |
| keywords[5].id | https://openalex.org/keywords/operator |
| keywords[5].score | 0.43885916471481323 |
| keywords[5].display_name | Operator (biology) |
| keywords[6].id | https://openalex.org/keywords/normalization |
| keywords[6].score | 0.42511457204818726 |
| keywords[6].display_name | Normalization (sociology) |
| keywords[7].id | https://openalex.org/keywords/performance-improvement |
| keywords[7].score | 0.4238213002681732 |
| keywords[7].display_name | Performance improvement |
| keywords[8].id | https://openalex.org/keywords/generative-model |
| keywords[8].score | 0.41874960064888 |
| keywords[8].display_name | Generative model |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.37738850712776184 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.32760319113731384 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/generative-grammar |
| keywords[11].score | 0.29964447021484375 |
| keywords[11].display_name | Generative grammar |
| keywords[12].id | https://openalex.org/keywords/deep-learning |
| keywords[12].score | 0.24680376052856445 |
| keywords[12].display_name | Deep learning |
| keywords[13].id | https://openalex.org/keywords/parallel-computing |
| keywords[13].score | 0.14250493049621582 |
| keywords[13].display_name | Parallel computing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.06197 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.06197 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.06197 |
| locations[1].id | doi:10.48550/arxiv.2401.06197 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.06197 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100528261 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yuwen Xiong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiong, Yuwen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100675974 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7041-0748 |
| authorships[1].author.display_name | Zhiqi Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Zhiqi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102821179 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9555-1897 |
| authorships[2].author.display_name | Yuntao Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Yuntao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100431109 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5457-4497 |
| authorships[3].author.display_name | Feng Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Feng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5112877229 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Xizhou Zhu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhu, Xizhou |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5079292022 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5585-8632 |
| authorships[5].author.display_name | Jiapeng Luo |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Luo, Jiapeng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101827340 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2418-3134 |
| authorships[6].author.display_name | Wenhai Wang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wang, Wenhai |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5061696740 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7051-5347 |
| authorships[7].author.display_name | Tong Lü |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Lu, Tong |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100732450 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2664-7975 |
| authorships[8].author.display_name | Hongsheng Li |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Li, Hongsheng |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5100748135 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-1889-2567 |
| authorships[9].author.display_name | Yu Qiao |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Qiao, Yu |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5000474748 |
| authorships[10].author.orcid | https://orcid.org/0009-0009-9809-3818 |
| authorships[10].author.display_name | Lewei Lu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Lu, Lewei |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5100620306 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-7701-234X |
| authorships[11].author.display_name | Jie Zhou |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Zhou, Jie |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5026944066 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-6785-0785 |
| authorships[12].author.display_name | Jifeng Dai |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Dai, Jifeng |
| authorships[12].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.06197 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-01-16T00:00:00 |
| display_name | Efficient Deformable ConvNets: Rethinking Dynamic and Sparse Operator for Vision Applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W3107204728, https://openalex.org/W4287591324, https://openalex.org/W2980176872, https://openalex.org/W4226420367, https://openalex.org/W2962876041, https://openalex.org/W3090555870, https://openalex.org/W3108503355, https://openalex.org/W2249953602, https://openalex.org/W2912971006, https://openalex.org/W4384937382 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.06197 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.06197 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.06197 |
| primary_location.id | pmh:oai:arXiv.org:2401.06197 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.06197 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.06197 |
| publication_date | 2024-01-11 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 14, 62, 70, 176 |
| abstract_inverted_index.1. | 32 |
| abstract_inverted_index.2. | 48 |
| abstract_inverted_index.In | 127 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 175 |
| abstract_inverted_index.in | 36, 61, 73, 111, 134, 142, 157 |
| abstract_inverted_index.of | 17, 24, 161 |
| abstract_inverted_index.to | 39, 52, 67, 123, 138, 144 |
| abstract_inverted_index.up | 143 |
| abstract_inverted_index.v4 | 4 |
| abstract_inverted_index.80% | 145 |
| abstract_inverted_index.The | 155 |
| abstract_inverted_index.and | 9, 44, 47, 69, 97, 100, 148, 159 |
| abstract_inverted_index.for | 13, 56, 180 |
| abstract_inverted_index.its | 25, 41, 118, 121, 165, 173 |
| abstract_inverted_index.key | 30 |
| abstract_inverted_index.the | 22, 83, 112, 135 |
| abstract_inverted_index.two | 29 |
| abstract_inverted_index.When | 104 |
| abstract_inverted_index.into | 106 |
| abstract_inverted_index.like | 109 |
| abstract_inverted_index.more | 79 |
| abstract_inverted_index.show | 172 |
| abstract_inverted_index.than | 80 |
| abstract_inverted_index.with | 28, 76, 132, 164 |
| abstract_inverted_index.DCNv3 | 68, 131 |
| abstract_inverted_index.DCNv4 | 20, 77, 86, 116, 133 |
| abstract_inverted_index.These | 58 |
| abstract_inverted_index.U-Net | 110 |
| abstract_inverted_index.block | 179 |
| abstract_inverted_index.broad | 15 |
| abstract_inverted_index.image | 94, 102 |
| abstract_inverted_index.model | 137 |
| abstract_inverted_index.power | 46 |
| abstract_inverted_index.speed | 146, 158 |
| abstract_inverted_index.three | 81 |
| abstract_inverted_index.times | 82 |
| abstract_inverted_index.DCNv3, | 27 |
| abstract_inverted_index.DCNv4, | 162 |
| abstract_inverted_index.access | 51 |
| abstract_inverted_index.across | 90, 168 |
| abstract_inverted_index.create | 139 |
| abstract_inverted_index.faster | 64 |
| abstract_inverted_index.future | 181 |
| abstract_inverted_index.highly | 7 |
| abstract_inverted_index.latent | 113 |
| abstract_inverted_index.memory | 50 |
| abstract_inverted_index.model, | 115 |
| abstract_inverted_index.models | 108 |
| abstract_inverted_index.result | 60 |
| abstract_inverted_index.robust | 166 |
| abstract_inverted_index.speed, | 75 |
| abstract_inverted_index.speed. | 85 |
| abstract_inverted_index.tasks, | 92, 171 |
| abstract_inverted_index.vision | 18, 170, 182 |
| abstract_inverted_index.diverse | 169 |
| abstract_inverted_index.dynamic | 42 |
| abstract_inverted_index.enhance | 40, 124 |
| abstract_inverted_index.forward | 84 |
| abstract_inverted_index.further | 149, 153 |
| abstract_inverted_index.models. | 126, 183 |
| abstract_inverted_index.results | 141 |
| abstract_inverted_index.softmax | 34 |
| abstract_inverted_index.spatial | 37 |
| abstract_inverted_index.various | 91 |
| abstract_inverted_index.without | 152 |
| abstract_inverted_index.(DCNv4), | 5 |
| abstract_inverted_index.building | 178 |
| abstract_inverted_index.combined | 163 |
| abstract_inverted_index.compared | 66 |
| abstract_inverted_index.designed | 12 |
| abstract_inverted_index.increase | 72, 147 |
| abstract_inverted_index.instance | 96 |
| abstract_inverted_index.minimize | 53 |
| abstract_inverted_index.notably, | 101 |
| abstract_inverted_index.operator | 11 |
| abstract_inverted_index.property | 43 |
| abstract_inverted_index.removing | 33 |
| abstract_inverted_index.semantic | 98 |
| abstract_inverted_index.spectrum | 16 |
| abstract_inverted_index.speedup. | 57 |
| abstract_inverted_index.achieving | 78 |
| abstract_inverted_index.addresses | 21 |
| abstract_inverted_index.baseline, | 119 |
| abstract_inverted_index.diffusion | 114 |
| abstract_inverted_index.effective | 10 |
| abstract_inverted_index.efficient | 8 |
| abstract_inverted_index.including | 93 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.potential | 174 |
| abstract_inverted_index.practical | 128 |
| abstract_inverted_index.redundant | 54 |
| abstract_inverted_index.replacing | 130 |
| abstract_inverted_index.Deformable | 2 |
| abstract_inverted_index.efficiency | 160 |
| abstract_inverted_index.expressive | 45 |
| abstract_inverted_index.generative | 107, 125 |
| abstract_inverted_index.integrated | 105 |
| abstract_inverted_index.operations | 55 |
| abstract_inverted_index.optimizing | 49 |
| abstract_inverted_index.processing | 74 |
| abstract_inverted_index.Convolution | 3 |
| abstract_inverted_index.InternImage | 136 |
| abstract_inverted_index.aggregation | 38 |
| abstract_inverted_index.convergence | 65 |
| abstract_inverted_index.exceptional | 88 |
| abstract_inverted_index.generation. | 103 |
| abstract_inverted_index.improvement | 151 |
| abstract_inverted_index.limitations | 23 |
| abstract_inverted_index.outperforms | 117 |
| abstract_inverted_index.performance | 89, 150, 167 |
| abstract_inverted_index.possibility | 122 |
| abstract_inverted_index.substantial | 71 |
| abstract_inverted_index.advancements | 156 |
| abstract_inverted_index.demonstrates | 87 |
| abstract_inverted_index.foundational | 177 |
| abstract_inverted_index.improvements | 59 |
| abstract_inverted_index.predecessor, | 26 |
| abstract_inverted_index.underscoring | 120 |
| abstract_inverted_index.applications, | 129 |
| abstract_inverted_index.applications. | 19 |
| abstract_inverted_index.enhancements: | 31 |
| abstract_inverted_index.normalization | 35 |
| abstract_inverted_index.segmentation, | 99 |
| abstract_inverted_index.significantly | 63 |
| abstract_inverted_index.modifications. | 154 |
| abstract_inverted_index.classification, | 95 |
| abstract_inverted_index.FlashInternImage | 140 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 13 |
| citation_normalized_percentile |