Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-2705625/v1
Advances in single-cell and -nucleus transcriptomics have enabled generation of increasingly large-scale datasets from hundreds of subjects and millions of cells. These studies promise to give unprecedented insight into the cell type specific biology of human disease. Yet performing differential expression analyses across subjects remains difficult due to challenges in statistical modeling of these complex studies and scaling analyses to large datasets. Our open-source R package dreamlet (DiseaseNeurogenomics.github.io/dreamlet) uses a pseudobulk approach based on precision-weighted linear mixed models to identify genes differentially expressed with traits across subjects for each cell cluster. Designed for data from large cohorts, dreamlet is substantially faster and uses less memory than existing workflows, while supporting complex statistical models and controlling the false positive rate. We demonstrate computational and statistical performance on published datasets, and a novel dataset of 1.4M single nuclei from postmortem brains of 150 Alzheimer’s disease cases and 149 controls.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-2705625/v1
- https://www.researchsquare.com/article/rs-2705625/latest.pdf
- OA Status
- gold
- Cited By
- 8
- References
- 76
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4367678547
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4367678547Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-2705625/v1Digital Object Identifier
- Title
-
Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamletWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-02Full publication date if available
- Authors
-
Gabriel E. Hoffman, Donghoon Lee, Jaroslav Bendl, Prashant Fnu, Aram Hong, Clara Casey, Marcela Alvia, Zhiping Shao, Stathis Argyriou, Karen Therrien, Sanan Venkatesh, Georgios Voloudakis, Vahram Haroutunian, John F. Fullard, Panos RoussosList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-2705625/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-2705625/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-2705625/latest.pdfDirect OA link when available
- Concepts
-
Scale (ratio), Expression (computer science), Computer science, Scale analysis (mathematics), Transcriptome, Differential (mechanical device), Computational biology, Data mining, Biology, Gene expression, Genetics, Geography, Engineering, Cartography, Gene, Meteorology, Aerospace engineering, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 3, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
76Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4367678547 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-2705625/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-2705625/v1 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37205331 |
| ids.openalex | https://openalex.org/W4367678547 |
| fwci | 1.48536326 |
| type | preprint |
| title | Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T10515 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9839000105857849 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | Cancer-related molecular mechanisms research |
| topics[2].id | https://openalex.org/T11482 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9830999970436096 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | RNA modifications and cancer |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778755073 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5554521679878235 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[0].display_name | Scale (ratio) |
| concepts[1].id | https://openalex.org/C90559484 |
| concepts[1].level | 2 |
| concepts[1].score | 0.49705007672309875 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q778379 |
| concepts[1].display_name | Expression (computer science) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.49393635988235474 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2775879016 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45878297090530396 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2845204 |
| concepts[3].display_name | Scale analysis (mathematics) |
| concepts[4].id | https://openalex.org/C162317418 |
| concepts[4].level | 4 |
| concepts[4].score | 0.43948468565940857 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q252857 |
| concepts[4].display_name | Transcriptome |
| concepts[5].id | https://openalex.org/C93226319 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42272618412971497 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q193137 |
| concepts[5].display_name | Differential (mechanical device) |
| concepts[6].id | https://openalex.org/C70721500 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4148064851760864 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[6].display_name | Computational biology |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3302319645881653 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2669757306575775 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C150194340 |
| concepts[9].level | 3 |
| concepts[9].score | 0.24656596779823303 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[9].display_name | Gene expression |
| concepts[10].id | https://openalex.org/C54355233 |
| concepts[10].level | 1 |
| concepts[10].score | 0.11720392107963562 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[10].display_name | Genetics |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.11319562792778015 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10385113954544067 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C58640448 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08202633261680603 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[13].display_name | Cartography |
| concepts[14].id | https://openalex.org/C104317684 |
| concepts[14].level | 2 |
| concepts[14].score | 0.07026723027229309 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[14].display_name | Gene |
| concepts[15].id | https://openalex.org/C153294291 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[15].display_name | Meteorology |
| concepts[16].id | https://openalex.org/C146978453 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[16].display_name | Aerospace engineering |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/scale |
| keywords[0].score | 0.5554521679878235 |
| keywords[0].display_name | Scale (ratio) |
| keywords[1].id | https://openalex.org/keywords/expression |
| keywords[1].score | 0.49705007672309875 |
| keywords[1].display_name | Expression (computer science) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.49393635988235474 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/scale-analysis |
| keywords[3].score | 0.45878297090530396 |
| keywords[3].display_name | Scale analysis (mathematics) |
| keywords[4].id | https://openalex.org/keywords/transcriptome |
| keywords[4].score | 0.43948468565940857 |
| keywords[4].display_name | Transcriptome |
| keywords[5].id | https://openalex.org/keywords/differential |
| keywords[5].score | 0.42272618412971497 |
| keywords[5].display_name | Differential (mechanical device) |
| keywords[6].id | https://openalex.org/keywords/computational-biology |
| keywords[6].score | 0.4148064851760864 |
| keywords[6].display_name | Computational biology |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3302319645881653 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/biology |
| keywords[8].score | 0.2669757306575775 |
| keywords[8].display_name | Biology |
| keywords[9].id | https://openalex.org/keywords/gene-expression |
| keywords[9].score | 0.24656596779823303 |
| keywords[9].display_name | Gene expression |
| keywords[10].id | https://openalex.org/keywords/genetics |
| keywords[10].score | 0.11720392107963562 |
| keywords[10].display_name | Genetics |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.11319562792778015 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.10385113954544067 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/cartography |
| keywords[13].score | 0.08202633261680603 |
| keywords[13].display_name | Cartography |
| keywords[14].id | https://openalex.org/keywords/gene |
| keywords[14].score | 0.07026723027229309 |
| keywords[14].display_name | Gene |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-2705625/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-2705625/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-2705625/v1 |
| locations[1].id | pmid:37205331 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Research square |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37205331 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10187426 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10187426/pdf/nihpp-rs2705625v1.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Res Sq |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10187426 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5046862823 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0957-0224 |
| authorships[0].author.display_name | Gabriel E. Hoffman |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[0].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[0].institutions[0].id | https://openalex.org/I98704320 |
| authorships[0].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gabriel Hoffman |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[1].author.id | https://openalex.org/A5100422973 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0453-6059 |
| authorships[1].author.display_name | Donghoon Lee |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[1].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[1].institutions[0].id | https://openalex.org/I98704320 |
| authorships[1].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Donghoon Lee |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[2].author.id | https://openalex.org/A5054767604 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9989-2720 |
| authorships[2].author.display_name | Jaroslav Bendl |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[2].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[2].institutions[0].id | https://openalex.org/I98704320 |
| authorships[2].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jaroslav Bendl |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[3].author.id | https://openalex.org/A5046912985 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Prashant Fnu |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[3].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[3].institutions[0].id | https://openalex.org/I98704320 |
| authorships[3].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Prashant Fnu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[4].author.id | https://openalex.org/A5077515475 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-6083-1998 |
| authorships[4].author.display_name | Aram Hong |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[4].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[4].institutions[0].id | https://openalex.org/I98704320 |
| authorships[4].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Aram Hong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[5].author.id | https://openalex.org/A5062222802 |
| authorships[5].author.orcid | https://orcid.org/0009-0002-9430-3557 |
| authorships[5].author.display_name | Clara Casey |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[5].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[5].institutions[0].id | https://openalex.org/I98704320 |
| authorships[5].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Clara Casey |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[6].author.id | https://openalex.org/A5030558618 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9706-1376 |
| authorships[6].author.display_name | Marcela Alvia |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[6].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[6].institutions[0].id | https://openalex.org/I98704320 |
| authorships[6].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Marcela Alvia |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[7].author.id | https://openalex.org/A5028711885 |
| authorships[7].author.orcid | https://orcid.org/0009-0006-4889-6637 |
| authorships[7].author.display_name | Zhiping Shao |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[7].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[7].institutions[0].id | https://openalex.org/I98704320 |
| authorships[7].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zhiping Shao |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[8].author.id | https://openalex.org/A5087693669 |
| authorships[8].author.orcid | https://orcid.org/0009-0008-0713-6599 |
| authorships[8].author.display_name | Stathis Argyriou |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[8].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[8].institutions[0].id | https://openalex.org/I98704320 |
| authorships[8].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Stathis Argyriou |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[9].author.id | https://openalex.org/A5053308945 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3351-7260 |
| authorships[9].author.display_name | Karen Therrien |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[9].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[9].institutions[0].id | https://openalex.org/I98704320 |
| authorships[9].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Karen Therrien |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[10].author.id | https://openalex.org/A5018240898 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-3094-2731 |
| authorships[10].author.display_name | Sanan Venkatesh |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[10].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[10].institutions[0].id | https://openalex.org/I98704320 |
| authorships[10].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Sanan Venkatesh |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[11].author.id | https://openalex.org/A5037342798 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-5729-632X |
| authorships[11].author.display_name | Georgios Voloudakis |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[11].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[11].institutions[0].id | https://openalex.org/I98704320 |
| authorships[11].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Georgios Voloudakis |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[12].author.id | https://openalex.org/A5054795331 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-5860-2512 |
| authorships[12].author.display_name | Vahram Haroutunian |
| authorships[12].affiliations[0].raw_affiliation_string | Mount Sinai and JJ Peters VA Medical Center |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Vahram Haroutunian |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Mount Sinai and JJ Peters VA Medical Center |
| authorships[13].author.id | https://openalex.org/A5024273553 |
| authorships[13].author.orcid | https://orcid.org/0000-0001-9874-2907 |
| authorships[13].author.display_name | John F. Fullard |
| authorships[13].countries | US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[13].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[13].institutions[0].id | https://openalex.org/I98704320 |
| authorships[13].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[13].institutions[0].type | education |
| authorships[13].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | John Fullard |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| authorships[14].author.id | https://openalex.org/A5074488210 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-4640-6239 |
| authorships[14].author.display_name | Panos Roussos |
| authorships[14].countries | US |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[14].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai |
| authorships[14].institutions[0].id | https://openalex.org/I98704320 |
| authorships[14].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[14].institutions[0].type | education |
| authorships[14].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[14].institutions[0].country_code | US |
| authorships[14].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[14].author_position | last |
| authorships[14].raw_author_name | Panos Roussos |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-2705625/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W2399513595, https://openalex.org/W4388386498, https://openalex.org/W2028462563, https://openalex.org/W2982720988, https://openalex.org/W4388725868, https://openalex.org/W2104762330, https://openalex.org/W4379374180, https://openalex.org/W2523545060, https://openalex.org/W2365350080, https://openalex.org/W2394388677 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.21203/rs.3.rs-2705625/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-2705625/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2705625/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-2705625/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-2705625/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2705625/v1 |
| publication_date | 2023-05-02 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4205209112, https://openalex.org/W1844405070, https://openalex.org/W2078059415, https://openalex.org/W2056198580, https://openalex.org/W3028343473, https://openalex.org/W3206010422, https://openalex.org/W3164808722, https://openalex.org/W4220867835, https://openalex.org/W4282024710, https://openalex.org/W2774307122, https://openalex.org/W2739492614, https://openalex.org/W3137030100, https://openalex.org/W2190545194, https://openalex.org/W3044388039, https://openalex.org/W3213536907, https://openalex.org/W2900732663, https://openalex.org/W2160444236, https://openalex.org/W2622807556, https://openalex.org/W4223591189, https://openalex.org/W6783144217, https://openalex.org/W4280633014, https://openalex.org/W1973094248, https://openalex.org/W2923101443, https://openalex.org/W4220914712, https://openalex.org/W6755861362, https://openalex.org/W3048036301, https://openalex.org/W4297498024, https://openalex.org/W2053675728, https://openalex.org/W2785085486, https://openalex.org/W6684826817, https://openalex.org/W3159756629, https://openalex.org/W3157353881, https://openalex.org/W7073995127, https://openalex.org/W2898824002, https://openalex.org/W3108941787, https://openalex.org/W2802823096, https://openalex.org/W4286449197, https://openalex.org/W4206949022, https://openalex.org/W2586076302, https://openalex.org/W4299687266, https://openalex.org/W2112220625, https://openalex.org/W2081098333, https://openalex.org/W4280598116, https://openalex.org/W2169456326, https://openalex.org/W4391829874, https://openalex.org/W2984472267, https://openalex.org/W3046454618, https://openalex.org/W2032665956, https://openalex.org/W2786672974, https://openalex.org/W2995043840, https://openalex.org/W2989807288, https://openalex.org/W2953584518, https://openalex.org/W4206439534, https://openalex.org/W1991952617, https://openalex.org/W4310942643, https://openalex.org/W2572662684, https://openalex.org/W2179438025, https://openalex.org/W2949177718, https://openalex.org/W2800392236, https://openalex.org/W4205215106, https://openalex.org/W4206959720, https://openalex.org/W3202649987, https://openalex.org/W2952240264, https://openalex.org/W3126641974, https://openalex.org/W2114104545, https://openalex.org/W3106188259, https://openalex.org/W2146512944, https://openalex.org/W3134873297, https://openalex.org/W2168342464, https://openalex.org/W3035380161, https://openalex.org/W3111509171, https://openalex.org/W3084137976, https://openalex.org/W2093650784, https://openalex.org/W2817838603, https://openalex.org/W2137526110, https://openalex.org/W2950796920 |
| referenced_works_count | 76 |
| abstract_inverted_index.R | 65 |
| abstract_inverted_index.a | 70, 130 |
| abstract_inverted_index.We | 120 |
| abstract_inverted_index.in | 2, 50 |
| abstract_inverted_index.is | 99 |
| abstract_inverted_index.of | 10, 16, 20, 35, 53, 133, 140 |
| abstract_inverted_index.on | 74, 126 |
| abstract_inverted_index.to | 25, 48, 60, 79 |
| abstract_inverted_index.149 | 146 |
| abstract_inverted_index.150 | 141 |
| abstract_inverted_index.Our | 63 |
| abstract_inverted_index.Yet | 38 |
| abstract_inverted_index.and | 4, 18, 57, 102, 114, 123, 129, 145 |
| abstract_inverted_index.due | 47 |
| abstract_inverted_index.for | 88, 93 |
| abstract_inverted_index.the | 30, 116 |
| abstract_inverted_index.1.4M | 134 |
| abstract_inverted_index.cell | 31, 90 |
| abstract_inverted_index.data | 94 |
| abstract_inverted_index.each | 89 |
| abstract_inverted_index.from | 14, 95, 137 |
| abstract_inverted_index.give | 26 |
| abstract_inverted_index.have | 7 |
| abstract_inverted_index.into | 29 |
| abstract_inverted_index.less | 104 |
| abstract_inverted_index.than | 106 |
| abstract_inverted_index.type | 32 |
| abstract_inverted_index.uses | 69, 103 |
| abstract_inverted_index.with | 84 |
| abstract_inverted_index.These | 22 |
| abstract_inverted_index.based | 73 |
| abstract_inverted_index.cases | 144 |
| abstract_inverted_index.false | 117 |
| abstract_inverted_index.genes | 81 |
| abstract_inverted_index.human | 36 |
| abstract_inverted_index.large | 61, 96 |
| abstract_inverted_index.mixed | 77 |
| abstract_inverted_index.novel | 131 |
| abstract_inverted_index.rate. | 119 |
| abstract_inverted_index.these | 54 |
| abstract_inverted_index.while | 109 |
| abstract_inverted_index.across | 43, 86 |
| abstract_inverted_index.brains | 139 |
| abstract_inverted_index.cells. | 21 |
| abstract_inverted_index.faster | 101 |
| abstract_inverted_index.linear | 76 |
| abstract_inverted_index.memory | 105 |
| abstract_inverted_index.models | 78, 113 |
| abstract_inverted_index.nuclei | 136 |
| abstract_inverted_index.single | 135 |
| abstract_inverted_index.traits | 85 |
| abstract_inverted_index.biology | 34 |
| abstract_inverted_index.complex | 55, 111 |
| abstract_inverted_index.dataset | 132 |
| abstract_inverted_index.disease | 143 |
| abstract_inverted_index.enabled | 8 |
| abstract_inverted_index.insight | 28 |
| abstract_inverted_index.package | 66 |
| abstract_inverted_index.promise | 24 |
| abstract_inverted_index.remains | 45 |
| abstract_inverted_index.scaling | 58 |
| abstract_inverted_index.studies | 23, 56 |
| abstract_inverted_index.-nucleus | 5 |
| abstract_inverted_index.Advances | 1 |
| abstract_inverted_index.Designed | 92 |
| abstract_inverted_index.analyses | 42, 59 |
| abstract_inverted_index.approach | 72 |
| abstract_inverted_index.cluster. | 91 |
| abstract_inverted_index.cohorts, | 97 |
| abstract_inverted_index.datasets | 13 |
| abstract_inverted_index.disease. | 37 |
| abstract_inverted_index.dreamlet | 67, 98 |
| abstract_inverted_index.existing | 107 |
| abstract_inverted_index.hundreds | 15 |
| abstract_inverted_index.identify | 80 |
| abstract_inverted_index.millions | 19 |
| abstract_inverted_index.modeling | 52 |
| abstract_inverted_index.positive | 118 |
| abstract_inverted_index.specific | 33 |
| abstract_inverted_index.subjects | 17, 44, 87 |
| abstract_inverted_index.controls. | 147 |
| abstract_inverted_index.datasets, | 128 |
| abstract_inverted_index.datasets. | 62 |
| abstract_inverted_index.difficult | 46 |
| abstract_inverted_index.expressed | 83 |
| abstract_inverted_index.published | 127 |
| abstract_inverted_index.challenges | 49 |
| abstract_inverted_index.expression | 41 |
| abstract_inverted_index.generation | 9 |
| abstract_inverted_index.performing | 39 |
| abstract_inverted_index.postmortem | 138 |
| abstract_inverted_index.pseudobulk | 71 |
| abstract_inverted_index.supporting | 110 |
| abstract_inverted_index.workflows, | 108 |
| abstract_inverted_index.controlling | 115 |
| abstract_inverted_index.demonstrate | 121 |
| abstract_inverted_index.large-scale | 12 |
| abstract_inverted_index.open-source | 64 |
| abstract_inverted_index.performance | 125 |
| abstract_inverted_index.single-cell | 3 |
| abstract_inverted_index.statistical | 51, 112, 124 |
| abstract_inverted_index.differential | 40 |
| abstract_inverted_index.increasingly | 11 |
| abstract_inverted_index.Alzheimer’s | 142 |
| abstract_inverted_index.computational | 122 |
| abstract_inverted_index.substantially | 100 |
| abstract_inverted_index.unprecedented | 27 |
| abstract_inverted_index.differentially | 82 |
| abstract_inverted_index.transcriptomics | 6 |
| abstract_inverted_index.precision-weighted | 75 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| abstract_inverted_index.(DiseaseNeurogenomics.github.io/dreamlet) | 68 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 15 |
| citation_normalized_percentile.value | 0.82023555 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |