Efficient Edge-AI Models for Robust ECG Abnormality Detection on Resource-Constrained Hardware Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s12265-024-10504-y
This study introduces two models, ConvLSTM2D-liquid time-constant network (CLTC) and ConvLSTM2D-closed-form continuous-time neural network (CCfC), designed for abnormality identification using electrocardiogram (ECG) data. Trained on the Telehealth Network of Minas Gerais (TNMG) subset dataset, both models were evaluated for their performance, generalizability capacity, and resilience. They demonstrated comparable results in terms of F1 scores and AUROC values. The CCfC model achieved slightly higher accuracy, while the CLTC model showed better handling of empty channels. Remarkably, the models were successfully deployed on a resource-constrained microcontroller, proving their suitability for edge device applications. Generalization capabilities were confirmed through the evaluation on the China Physiological Signal Challenge 2018 (CPSC) dataset. The models’ efficient resource utilization, occupying 70.6% of memory and 9.4% of flash memory, makes them promising candidates for real-world healthcare applications. Overall, this research advances abnormality identification in ECG data, contributing to the progress of AI in healthcare. Graphical Abstract
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s12265-024-10504-y
- OA Status
- hybrid
- Cited By
- 13
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394738178
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394738178Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s12265-024-10504-yDigital Object Identifier
- Title
-
Efficient Edge-AI Models for Robust ECG Abnormality Detection on Resource-Constrained HardwareWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-12Full publication date if available
- Authors
-
Zhaojing Huang, Luis Fernando Herbozo Contreras, Wing Leung, Leping Yu, Nhan Duy Truong, Armin Nikpour, Omid KaveheiList of authors in order
- Landing page
-
https://doi.org/10.1007/s12265-024-10504-yPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1007/s12265-024-10504-yDirect OA link when available
- Concepts
-
Computer science, Abnormality, Generalizability theory, Artificial intelligence, Generalization, Identification (biology), Artificial neural network, Machine learning, Resource (disambiguation), Data mining, Pattern recognition (psychology), Medicine, Mathematical analysis, Psychiatry, Biology, Botany, Mathematics, Statistics, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394738178 |
|---|---|
| doi | https://doi.org/10.1007/s12265-024-10504-y |
| ids.doi | https://doi.org/10.1007/s12265-024-10504-y |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38472722 |
| ids.openalex | https://openalex.org/W4394738178 |
| fwci | 10.77337912 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000295 |
| mesh[1].descriptor_ui | D004562 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | instrumentation |
| mesh[1].descriptor_name | Electrocardiography |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D011237 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Predictive Value of Tests |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D012815 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D016571 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Neural Networks, Computer |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D015203 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Reproducibility of Results |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006339 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Heart Rate |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D016208 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Databases, Factual |
| mesh[8].qualifier_ui | Q000295 |
| mesh[8].descriptor_ui | D003936 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | instrumentation |
| mesh[8].descriptor_name | Diagnosis, Computer-Assisted |
| mesh[9].qualifier_ui | Q000175 |
| mesh[9].descriptor_ui | D001145 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | diagnosis |
| mesh[9].descriptor_name | Arrhythmias, Cardiac |
| mesh[10].qualifier_ui | Q000503 |
| mesh[10].descriptor_ui | D001145 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | physiopathology |
| mesh[10].descriptor_name | Arrhythmias, Cardiac |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D013997 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Time Factors |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D004867 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Equipment Design |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000200 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Action Potentials |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | Q000295 |
| mesh[15].descriptor_ui | D004562 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | instrumentation |
| mesh[15].descriptor_name | Electrocardiography |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D011237 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Predictive Value of Tests |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D012815 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D016571 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Neural Networks, Computer |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D015203 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Reproducibility of Results |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006339 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Heart Rate |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D016208 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Databases, Factual |
| mesh[22].qualifier_ui | Q000295 |
| mesh[22].descriptor_ui | D003936 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | instrumentation |
| mesh[22].descriptor_name | Diagnosis, Computer-Assisted |
| mesh[23].qualifier_ui | Q000175 |
| mesh[23].descriptor_ui | D001145 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | diagnosis |
| mesh[23].descriptor_name | Arrhythmias, Cardiac |
| mesh[24].qualifier_ui | Q000503 |
| mesh[24].descriptor_ui | D001145 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | physiopathology |
| mesh[24].descriptor_name | Arrhythmias, Cardiac |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D013997 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Time Factors |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D004867 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Equipment Design |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000200 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Action Potentials |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D006801 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Humans |
| mesh[29].qualifier_ui | Q000295 |
| mesh[29].descriptor_ui | D004562 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | instrumentation |
| mesh[29].descriptor_name | Electrocardiography |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D011237 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Predictive Value of Tests |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D012815 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D016571 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Neural Networks, Computer |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D015203 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Reproducibility of Results |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D006339 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Heart Rate |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D016208 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Databases, Factual |
| mesh[36].qualifier_ui | Q000295 |
| mesh[36].descriptor_ui | D003936 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | instrumentation |
| mesh[36].descriptor_name | Diagnosis, Computer-Assisted |
| mesh[37].qualifier_ui | Q000175 |
| mesh[37].descriptor_ui | D001145 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | diagnosis |
| mesh[37].descriptor_name | Arrhythmias, Cardiac |
| mesh[38].qualifier_ui | Q000503 |
| mesh[38].descriptor_ui | D001145 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | physiopathology |
| mesh[38].descriptor_name | Arrhythmias, Cardiac |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D013997 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Time Factors |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D004867 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Equipment Design |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D000200 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Action Potentials |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D006801 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Humans |
| mesh[43].qualifier_ui | Q000295 |
| mesh[43].descriptor_ui | D004562 |
| mesh[43].is_major_topic | True |
| mesh[43].qualifier_name | instrumentation |
| mesh[43].descriptor_name | Electrocardiography |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D011237 |
| mesh[44].is_major_topic | True |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Predictive Value of Tests |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D012815 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[46].qualifier_ui | |
| mesh[46].descriptor_ui | D016571 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | |
| mesh[46].descriptor_name | Neural Networks, Computer |
| mesh[47].qualifier_ui | |
| mesh[47].descriptor_ui | D015203 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | |
| mesh[47].descriptor_name | Reproducibility of Results |
| mesh[48].qualifier_ui | |
| mesh[48].descriptor_ui | D006339 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | |
| mesh[48].descriptor_name | Heart Rate |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D016208 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Databases, Factual |
| type | article |
| title | Efficient Edge-AI Models for Robust ECG Abnormality Detection on Resource-Constrained Hardware |
| biblio.issue | 4 |
| biblio.volume | 17 |
| biblio.last_page | 892 |
| biblio.first_page | 879 |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9919999837875366 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T11196 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9871000051498413 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Non-Invasive Vital Sign Monitoring |
| funders[0].id | https://openalex.org/F4320320966 |
| funders[0].ror | https://ror.org/0384j8v12 |
| funders[0].display_name | University of Sydney |
| is_xpac | False |
| apc_list.value | 3190 |
| apc_list.currency | EUR |
| apc_list.value_usd | 4190 |
| apc_paid.value | 3190 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 4190 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7021157145500183 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C50965678 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6823862791061401 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2724302 |
| concepts[1].display_name | Abnormality |
| concepts[2].id | https://openalex.org/C27158222 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6544022560119629 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[2].display_name | Generalizability theory |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5359870195388794 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C177148314 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5160162448883057 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[4].display_name | Generalization |
| concepts[5].id | https://openalex.org/C116834253 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48256149888038635 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[5].display_name | Identification (biology) |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44560351967811584 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44177013635635376 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C206345919 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4402003884315491 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[8].display_name | Resource (disambiguation) |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37946730852127075 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.34343206882476807 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.17486846446990967 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| concepts[13].id | https://openalex.org/C118552586 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[13].display_name | Psychiatry |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C59822182 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[15].display_name | Botany |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C31258907 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[18].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7021157145500183 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/abnormality |
| keywords[1].score | 0.6823862791061401 |
| keywords[1].display_name | Abnormality |
| keywords[2].id | https://openalex.org/keywords/generalizability-theory |
| keywords[2].score | 0.6544022560119629 |
| keywords[2].display_name | Generalizability theory |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5359870195388794 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/generalization |
| keywords[4].score | 0.5160162448883057 |
| keywords[4].display_name | Generalization |
| keywords[5].id | https://openalex.org/keywords/identification |
| keywords[5].score | 0.48256149888038635 |
| keywords[5].display_name | Identification (biology) |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.44560351967811584 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.44177013635635376 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/resource |
| keywords[8].score | 0.4402003884315491 |
| keywords[8].display_name | Resource (disambiguation) |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.37946730852127075 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.34343206882476807 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.17486846446990967 |
| keywords[11].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1007/s12265-024-10504-y |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S62013175 |
| locations[0].source.issn | 1937-5387, 1937-5395 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1937-5387 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Cardiovascular Translational Research |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Cardiovascular Translational Research |
| locations[0].landing_page_url | https://doi.org/10.1007/s12265-024-10504-y |
| locations[1].id | pmid:38472722 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of cardiovascular translational research |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38472722 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11371854 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Cardiovasc Transl Res |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11371854 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5001186036 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-2796-6734 |
| authorships[0].author.display_name | Zhaojing Huang |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. [email protected]. |
| authorships[0].institutions[0].id | https://openalex.org/I129604602 |
| authorships[0].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | The University of Sydney |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhaojing Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. [email protected]. |
| authorships[1].author.id | https://openalex.org/A5029910918 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-8458-9486 |
| authorships[1].author.display_name | Luis Fernando Herbozo Contreras |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. |
| authorships[1].institutions[0].id | https://openalex.org/I129604602 |
| authorships[1].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | The University of Sydney |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luis Fernando Herbozo Contreras |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. |
| authorships[2].author.id | https://openalex.org/A5062964407 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2996-7229 |
| authorships[2].author.display_name | Wing Leung |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. |
| authorships[2].institutions[0].id | https://openalex.org/I129604602 |
| authorships[2].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | The University of Sydney |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wing Hang Leung |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. |
| authorships[3].author.id | https://openalex.org/A5101219367 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Leping Yu |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. |
| authorships[3].institutions[0].id | https://openalex.org/I129604602 |
| authorships[3].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | The University of Sydney |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Leping Yu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. |
| authorships[4].author.id | https://openalex.org/A5070106809 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4350-8026 |
| authorships[4].author.display_name | Nhan Duy Truong |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. |
| authorships[4].institutions[0].id | https://openalex.org/I129604602 |
| authorships[4].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | The University of Sydney |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nhan Duy Truong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. |
| authorships[5].author.id | https://openalex.org/A5055081506 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2384-0710 |
| authorships[5].author.display_name | Armin Nikpour |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I129604602, https://openalex.org/I2799732068 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Neurology, Royal Prince Alfred Hospital, and Central Clinical School, The University of Sydney, NSW 2006, Sydney, Australia. |
| authorships[5].institutions[0].id | https://openalex.org/I2799732068 |
| authorships[5].institutions[0].ror | https://ror.org/05gpvde20 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I2799732068 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | Royal Prince Alfred Hospital |
| authorships[5].institutions[1].id | https://openalex.org/I129604602 |
| authorships[5].institutions[1].ror | https://ror.org/0384j8v12 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I129604602 |
| authorships[5].institutions[1].country_code | AU |
| authorships[5].institutions[1].display_name | The University of Sydney |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Armin Nikpour |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Neurology, Royal Prince Alfred Hospital, and Central Clinical School, The University of Sydney, NSW 2006, Sydney, Australia. |
| authorships[6].author.id | https://openalex.org/A5065017416 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2753-5553 |
| authorships[6].author.display_name | Omid Kavehei |
| authorships[6].countries | AU |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. |
| authorships[6].institutions[0].id | https://openalex.org/I129604602 |
| authorships[6].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[6].institutions[0].country_code | AU |
| authorships[6].institutions[0].display_name | The University of Sydney |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Omid Kavehei |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Biomedical Engineering, The University of Sydney, NSW 2008, Sydney, Australia. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1007/s12265-024-10504-y |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Edge-AI Models for Robust ECG Abnormality Detection on Resource-Constrained Hardware |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-20T23:13:51.555489 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W2118717649, https://openalex.org/W2413243053, https://openalex.org/W410723623, https://openalex.org/W2015341305, https://openalex.org/W2035068594, https://openalex.org/W4225593417, https://openalex.org/W2573498121, https://openalex.org/W3022298670, https://openalex.org/W3160494304, https://openalex.org/W2167883292 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1007/s12265-024-10504-y |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S62013175 |
| best_oa_location.source.issn | 1937-5387, 1937-5395 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1937-5387 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Cardiovascular Translational Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Cardiovascular Translational Research |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s12265-024-10504-y |
| primary_location.id | doi:10.1007/s12265-024-10504-y |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S62013175 |
| primary_location.source.issn | 1937-5387, 1937-5395 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1937-5387 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Cardiovascular Translational Research |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Cardiovascular Translational Research |
| primary_location.landing_page_url | https://doi.org/10.1007/s12265-024-10504-y |
| publication_date | 2024-03-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2017263726, https://openalex.org/W3096541186, https://openalex.org/W3084352865, https://openalex.org/W3217425866, https://openalex.org/W3005487465, https://openalex.org/W3028054676, https://openalex.org/W4382792752, https://openalex.org/W3033739625, https://openalex.org/W4309471863, https://openalex.org/W2888456553, https://openalex.org/W3015226328, https://openalex.org/W2805935996, https://openalex.org/W1983223848, https://openalex.org/W2154667383, https://openalex.org/W1893440496, https://openalex.org/W2808975670, https://openalex.org/W2335782053, https://openalex.org/W4383550555, https://openalex.org/W1939789023, https://openalex.org/W4317926940, https://openalex.org/W4312084746, https://openalex.org/W4399359966, https://openalex.org/W3099085560, https://openalex.org/W4391636526 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 82 |
| abstract_inverted_index.AI | 144 |
| abstract_inverted_index.F1 | 53 |
| abstract_inverted_index.in | 50, 136, 145 |
| abstract_inverted_index.of | 29, 52, 72, 115, 119, 143 |
| abstract_inverted_index.on | 25, 81, 99 |
| abstract_inverted_index.to | 140 |
| abstract_inverted_index.ECG | 137 |
| abstract_inverted_index.The | 58, 108 |
| abstract_inverted_index.and | 10, 44, 55, 117 |
| abstract_inverted_index.for | 17, 39, 88, 126 |
| abstract_inverted_index.the | 26, 66, 76, 97, 100, 141 |
| abstract_inverted_index.two | 4 |
| abstract_inverted_index.2018 | 105 |
| abstract_inverted_index.9.4% | 118 |
| abstract_inverted_index.CCfC | 59 |
| abstract_inverted_index.CLTC | 67 |
| abstract_inverted_index.They | 46 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.both | 35 |
| abstract_inverted_index.edge | 89 |
| abstract_inverted_index.them | 123 |
| abstract_inverted_index.this | 131 |
| abstract_inverted_index.were | 37, 78, 94 |
| abstract_inverted_index.(ECG) | 22 |
| abstract_inverted_index.70.6% | 114 |
| abstract_inverted_index.AUROC | 56 |
| abstract_inverted_index.China | 101 |
| abstract_inverted_index.Minas | 30 |
| abstract_inverted_index.data, | 138 |
| abstract_inverted_index.data. | 23 |
| abstract_inverted_index.empty | 73 |
| abstract_inverted_index.flash | 120 |
| abstract_inverted_index.makes | 122 |
| abstract_inverted_index.model | 60, 68 |
| abstract_inverted_index.study | 2 |
| abstract_inverted_index.terms | 51 |
| abstract_inverted_index.their | 40, 86 |
| abstract_inverted_index.using | 20 |
| abstract_inverted_index.while | 65 |
| abstract_inverted_index.(CLTC) | 9 |
| abstract_inverted_index.(CPSC) | 106 |
| abstract_inverted_index.(TNMG) | 32 |
| abstract_inverted_index.Gerais | 31 |
| abstract_inverted_index.Signal | 103 |
| abstract_inverted_index.better | 70 |
| abstract_inverted_index.device | 90 |
| abstract_inverted_index.higher | 63 |
| abstract_inverted_index.memory | 116 |
| abstract_inverted_index.models | 36, 77 |
| abstract_inverted_index.neural | 13 |
| abstract_inverted_index.scores | 54 |
| abstract_inverted_index.showed | 69 |
| abstract_inverted_index.subset | 33 |
| abstract_inverted_index.(CCfC), | 15 |
| abstract_inverted_index.Network | 28 |
| abstract_inverted_index.Trained | 24 |
| abstract_inverted_index.memory, | 121 |
| abstract_inverted_index.models, | 5 |
| abstract_inverted_index.network | 8, 14 |
| abstract_inverted_index.proving | 85 |
| abstract_inverted_index.results | 49 |
| abstract_inverted_index.through | 96 |
| abstract_inverted_index.values. | 57 |
| abstract_inverted_index.Abstract | 0, 148 |
| abstract_inverted_index.Overall, | 130 |
| abstract_inverted_index.achieved | 61 |
| abstract_inverted_index.advances | 133 |
| abstract_inverted_index.dataset, | 34 |
| abstract_inverted_index.dataset. | 107 |
| abstract_inverted_index.deployed | 80 |
| abstract_inverted_index.designed | 16 |
| abstract_inverted_index.handling | 71 |
| abstract_inverted_index.progress | 142 |
| abstract_inverted_index.research | 132 |
| abstract_inverted_index.resource | 111 |
| abstract_inverted_index.slightly | 62 |
| abstract_inverted_index.Challenge | 104 |
| abstract_inverted_index.Graphical | 147 |
| abstract_inverted_index.accuracy, | 64 |
| abstract_inverted_index.capacity, | 43 |
| abstract_inverted_index.channels. | 74 |
| abstract_inverted_index.confirmed | 95 |
| abstract_inverted_index.efficient | 110 |
| abstract_inverted_index.evaluated | 38 |
| abstract_inverted_index.models’ | 109 |
| abstract_inverted_index.occupying | 113 |
| abstract_inverted_index.promising | 124 |
| abstract_inverted_index.Telehealth | 27 |
| abstract_inverted_index.candidates | 125 |
| abstract_inverted_index.comparable | 48 |
| abstract_inverted_index.evaluation | 98 |
| abstract_inverted_index.healthcare | 128 |
| abstract_inverted_index.introduces | 3 |
| abstract_inverted_index.real-world | 127 |
| abstract_inverted_index.Remarkably, | 75 |
| abstract_inverted_index.abnormality | 18, 134 |
| abstract_inverted_index.healthcare. | 146 |
| abstract_inverted_index.resilience. | 45 |
| abstract_inverted_index.suitability | 87 |
| abstract_inverted_index.capabilities | 93 |
| abstract_inverted_index.contributing | 139 |
| abstract_inverted_index.demonstrated | 47 |
| abstract_inverted_index.performance, | 41 |
| abstract_inverted_index.successfully | 79 |
| abstract_inverted_index.utilization, | 112 |
| abstract_inverted_index.Physiological | 102 |
| abstract_inverted_index.applications. | 91, 129 |
| abstract_inverted_index.time-constant | 7 |
| abstract_inverted_index.Generalization | 92 |
| abstract_inverted_index.identification | 19, 135 |
| abstract_inverted_index.continuous-time | 12 |
| abstract_inverted_index.generalizability | 42 |
| abstract_inverted_index.microcontroller, | 84 |
| abstract_inverted_index.ConvLSTM2D-liquid | 6 |
| abstract_inverted_index.electrocardiogram | 21 |
| abstract_inverted_index.resource-constrained | 83 |
| abstract_inverted_index.ConvLSTM2D-closed-form | 11 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.97517974 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |