Efficient feature extraction from highly sparse binary genotype data for cancer prognosis prediction using an auto-encoder Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3389/fonc.2022.1091767
Genomics involving tens of thousands of genes is a complex system determining phenotype. An interesting and vital issue is how to integrate highly sparse genetic genomics data with a mass of minor effects into a prediction model for improving prediction power. We find that the deep learning method can work well to extract features by transforming highly sparse dichotomous data to lower-dimensional continuous data in a non-linear way. This may provide benefits in risk prediction-associated genotype data. We developed a multi-stage strategy to extract information from highly sparse binary genotype data and applied it for cancer prognosis. Specifically, we first reduced the size of binary biomarkers via a univariable regression model to a moderate size. Then, a trainable auto-encoder was used to learn compact features from the reduced data. Next, we performed a LASSO problem process to select the optimal combination of extracted features. Lastly, we applied such feature combination to real cancer prognostic models and evaluated the raw predictive effect of the models. The results indicated that these compressed transformation features could better improve the model’s original predictive performance and might avoid an overfitting problem. This idea may be enlightening for everyone involved in cancer research, risk reduction, treatment, and patient care via integrating genomics data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fonc.2022.1091767
- https://www.frontiersin.org/articles/10.3389/fonc.2022.1091767/pdf
- OA Status
- gold
- Cited By
- 3
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4315433436
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4315433436Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fonc.2022.1091767Digital Object Identifier
- Title
-
Efficient feature extraction from highly sparse binary genotype data for cancer prognosis prediction using an auto-encoderWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-10Full publication date if available
- Authors
-
Junjie Shen, Huijun Li, Xinghao Yu, Lu Bai, Yongfei Dong, Jianping Cao, Ke Lü, Zaixiang TangList of authors in order
- Landing page
-
https://doi.org/10.3389/fonc.2022.1091767Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fonc.2022.1091767/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fonc.2022.1091767/pdfDirect OA link when available
- Concepts
-
Overfitting, Computer science, Lasso (programming language), Autoencoder, Feature selection, Artificial intelligence, Binary classification, Data mining, Big data, Predictive modelling, Pattern recognition (psychology), Machine learning, Deep learning, Artificial neural network, Support vector machine, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4315433436 |
|---|---|
| doi | https://doi.org/10.3389/fonc.2022.1091767 |
| ids.doi | https://doi.org/10.3389/fonc.2022.1091767 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36703783 |
| ids.openalex | https://openalex.org/W4315433436 |
| fwci | 0.55701122 |
| type | article |
| title | Efficient feature extraction from highly sparse binary genotype data for cancer prognosis prediction using an auto-encoder |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 1091767 |
| biblio.first_page | 1091767 |
| topics[0].id | https://openalex.org/T10885 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene expression and cancer classification |
| topics[1].id | https://openalex.org/T10515 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9943000078201294 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | Cancer-related molecular mechanisms research |
| topics[2].id | https://openalex.org/T12254 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9937000274658203 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Machine Learning in Bioinformatics |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.859880268573761 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6958917379379272 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C37616216 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6463184952735901 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[2].display_name | Lasso (programming language) |
| concepts[3].id | https://openalex.org/C101738243 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6152280569076538 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[3].display_name | Autoencoder |
| concepts[4].id | https://openalex.org/C148483581 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5375599265098572 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[4].display_name | Feature selection |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5362801551818848 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C66905080 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4952615797519684 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17005494 |
| concepts[6].display_name | Binary classification |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45962440967559814 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C75684735 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4194394052028656 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[8].display_name | Big data |
| concepts[9].id | https://openalex.org/C45804977 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41782233119010925 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[9].display_name | Predictive modelling |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41102707386016846 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.41080522537231445 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C108583219 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2897660732269287 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep learning |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.19168207049369812 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C12267149 |
| concepts[14].level | 2 |
| concepts[14].score | 0.17512083053588867 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[14].display_name | Support vector machine |
| concepts[15].id | https://openalex.org/C136764020 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[15].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.859880268573761 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6958917379379272 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/lasso |
| keywords[2].score | 0.6463184952735901 |
| keywords[2].display_name | Lasso (programming language) |
| keywords[3].id | https://openalex.org/keywords/autoencoder |
| keywords[3].score | 0.6152280569076538 |
| keywords[3].display_name | Autoencoder |
| keywords[4].id | https://openalex.org/keywords/feature-selection |
| keywords[4].score | 0.5375599265098572 |
| keywords[4].display_name | Feature selection |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5362801551818848 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/binary-classification |
| keywords[6].score | 0.4952615797519684 |
| keywords[6].display_name | Binary classification |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.45962440967559814 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/big-data |
| keywords[8].score | 0.4194394052028656 |
| keywords[8].display_name | Big data |
| keywords[9].id | https://openalex.org/keywords/predictive-modelling |
| keywords[9].score | 0.41782233119010925 |
| keywords[9].display_name | Predictive modelling |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.41102707386016846 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.41080522537231445 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/deep-learning |
| keywords[12].score | 0.2897660732269287 |
| keywords[12].display_name | Deep learning |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.19168207049369812 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/support-vector-machine |
| keywords[14].score | 0.17512083053588867 |
| keywords[14].display_name | Support vector machine |
| language | en |
| locations[0].id | doi:10.3389/fonc.2022.1091767 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2596394214 |
| locations[0].source.issn | 2234-943X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2234-943X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Oncology |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fonc.2022.1091767/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Oncology |
| locations[0].landing_page_url | https://doi.org/10.3389/fonc.2022.1091767 |
| locations[1].id | pmid:36703783 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in oncology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36703783 |
| locations[2].id | pmh:oai:doaj.org/article:a42f04278ef54d54a867570957cc43d3 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Oncology, Vol 12 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/a42f04278ef54d54a867570957cc43d3 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9872139 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Oncol |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9872139 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5058159511 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7944-4445 |
| authorships[0].author.display_name | Junjie Shen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3923682 |
| authorships[0].affiliations[0].raw_affiliation_string | Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I3923682 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I3923682 |
| authorships[0].institutions[0].ror | https://ror.org/05t8y2r12 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3923682 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Soochow University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Junjie Shen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| authorships[1].author.id | https://openalex.org/A5100346087 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5740-4135 |
| authorships[1].author.display_name | Huijun Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3923682 |
| authorships[1].affiliations[0].raw_affiliation_string | Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I3923682 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I3923682 |
| authorships[1].institutions[0].ror | https://ror.org/05t8y2r12 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3923682 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Soochow University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huijun Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| authorships[2].author.id | https://openalex.org/A5020865182 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0589-0386 |
| authorships[2].author.display_name | Xinghao Yu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3923682 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I3923682 |
| authorships[2].affiliations[1].raw_affiliation_string | Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I3923682 |
| authorships[2].institutions[0].ror | https://ror.org/05t8y2r12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3923682 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Soochow University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinghao Yu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| authorships[3].author.id | https://openalex.org/A5017499714 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1242-5412 |
| authorships[3].author.display_name | Lu Bai |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3923682 |
| authorships[3].affiliations[0].raw_affiliation_string | Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I3923682 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I3923682 |
| authorships[3].institutions[0].ror | https://ror.org/05t8y2r12 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3923682 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Soochow University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lu Bai |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| authorships[4].author.id | https://openalex.org/A5089168988 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1740-1375 |
| authorships[4].author.display_name | Yongfei Dong |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3923682 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I3923682 |
| authorships[4].affiliations[1].raw_affiliation_string | Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I3923682 |
| authorships[4].institutions[0].ror | https://ror.org/05t8y2r12 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I3923682 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Soochow University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yongfei Dong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| authorships[5].author.id | https://openalex.org/A5011201549 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1974-0047 |
| authorships[5].author.display_name | Jianping Cao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I3923682 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China |
| authorships[5].institutions[0].id | https://openalex.org/I3923682 |
| authorships[5].institutions[0].ror | https://ror.org/05t8y2r12 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I3923682 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Soochow University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jianping Cao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China |
| authorships[6].author.id | https://openalex.org/A5079281855 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3456-4993 |
| authorships[6].author.display_name | Ke Lü |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I115592961, https://openalex.org/I4210110396 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210110396 |
| authorships[6].institutions[0].ror | https://ror.org/01kzsq416 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210110396 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | First People's Hospital of Kunshan |
| authorships[6].institutions[1].id | https://openalex.org/I115592961 |
| authorships[6].institutions[1].ror | https://ror.org/03jc41j30 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I115592961 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Jiangsu University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ke Lu |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China |
| authorships[7].author.id | https://openalex.org/A5083525893 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4981-3347 |
| authorships[7].author.display_name | Zaixiang Tang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I3923682 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I3923682 |
| authorships[7].affiliations[1].raw_affiliation_string | Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| authorships[7].institutions[0].id | https://openalex.org/I3923682 |
| authorships[7].institutions[0].ror | https://ror.org/05t8y2r12 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I3923682 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Soochow University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Zaixiang Tang |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fonc.2022.1091767/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient feature extraction from highly sparse binary genotype data for cancer prognosis prediction using an auto-encoder |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10885 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene expression and cancer classification |
| related_works | https://openalex.org/W1574414179, https://openalex.org/W4362597605, https://openalex.org/W3009056573, https://openalex.org/W2922073769, https://openalex.org/W2810330923, https://openalex.org/W4289763776, https://openalex.org/W4309131238, https://openalex.org/W4380355000, https://openalex.org/W3099518927, https://openalex.org/W3162172987 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fonc.2022.1091767 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2596394214 |
| best_oa_location.source.issn | 2234-943X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2234-943X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Oncology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fonc.2022.1091767/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Oncology |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fonc.2022.1091767 |
| primary_location.id | doi:10.3389/fonc.2022.1091767 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2596394214 |
| primary_location.source.issn | 2234-943X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2234-943X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Oncology |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fonc.2022.1091767/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Oncology |
| primary_location.landing_page_url | https://doi.org/10.3389/fonc.2022.1091767 |
| publication_date | 2023-01-10 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2792874817, https://openalex.org/W2550535012, https://openalex.org/W3204312334, https://openalex.org/W1543911290, https://openalex.org/W2135046866, https://openalex.org/W2160068277, https://openalex.org/W1842183253, https://openalex.org/W2951456052, https://openalex.org/W1488505114, https://openalex.org/W2583698053, https://openalex.org/W2048011602, https://openalex.org/W1978150238, https://openalex.org/W2163922914, https://openalex.org/W2100495367, https://openalex.org/W2049295438, https://openalex.org/W6676481782, https://openalex.org/W2911925130, https://openalex.org/W2131060185, https://openalex.org/W950283202, https://openalex.org/W2614458381, https://openalex.org/W2026574448, https://openalex.org/W2046324375, https://openalex.org/W2112796928, https://openalex.org/W2025768430, https://openalex.org/W2086099578, https://openalex.org/W2020628257, https://openalex.org/W3196385085, https://openalex.org/W2149998987, https://openalex.org/W2154200152, https://openalex.org/W2106973450, https://openalex.org/W3103660449, https://openalex.org/W3005186462, https://openalex.org/W2524518021, https://openalex.org/W3120988047, https://openalex.org/W2973151618, https://openalex.org/W3093028997, https://openalex.org/W2964136462, https://openalex.org/W2110798204 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 8, 28, 34, 65, 79, 107, 112, 116, 132 |
| abstract_inverted_index.An | 13 |
| abstract_inverted_index.We | 41, 77 |
| abstract_inverted_index.an | 183 |
| abstract_inverted_index.be | 189 |
| abstract_inverted_index.by | 54 |
| abstract_inverted_index.in | 64, 72, 194 |
| abstract_inverted_index.is | 7, 18 |
| abstract_inverted_index.it | 93 |
| abstract_inverted_index.of | 3, 5, 30, 103, 141, 161 |
| abstract_inverted_index.to | 20, 51, 60, 82, 111, 121, 136, 150 |
| abstract_inverted_index.we | 98, 130, 145 |
| abstract_inverted_index.The | 164 |
| abstract_inverted_index.and | 15, 91, 155, 180, 200 |
| abstract_inverted_index.can | 48 |
| abstract_inverted_index.for | 37, 94, 191 |
| abstract_inverted_index.how | 19 |
| abstract_inverted_index.may | 69, 188 |
| abstract_inverted_index.raw | 158 |
| abstract_inverted_index.the | 44, 101, 126, 138, 157, 162, 175 |
| abstract_inverted_index.via | 106, 203 |
| abstract_inverted_index.was | 119 |
| abstract_inverted_index.This | 68, 186 |
| abstract_inverted_index.care | 202 |
| abstract_inverted_index.data | 26, 59, 63, 90 |
| abstract_inverted_index.deep | 45 |
| abstract_inverted_index.find | 42 |
| abstract_inverted_index.from | 85, 125 |
| abstract_inverted_index.idea | 187 |
| abstract_inverted_index.into | 33 |
| abstract_inverted_index.mass | 29 |
| abstract_inverted_index.real | 151 |
| abstract_inverted_index.risk | 73, 197 |
| abstract_inverted_index.size | 102 |
| abstract_inverted_index.such | 147 |
| abstract_inverted_index.tens | 2 |
| abstract_inverted_index.that | 43, 167 |
| abstract_inverted_index.used | 120 |
| abstract_inverted_index.way. | 67 |
| abstract_inverted_index.well | 50 |
| abstract_inverted_index.with | 27 |
| abstract_inverted_index.work | 49 |
| abstract_inverted_index.LASSO | 133 |
| abstract_inverted_index.Next, | 129 |
| abstract_inverted_index.Then, | 115 |
| abstract_inverted_index.avoid | 182 |
| abstract_inverted_index.could | 172 |
| abstract_inverted_index.data. | 76, 128, 206 |
| abstract_inverted_index.first | 99 |
| abstract_inverted_index.genes | 6 |
| abstract_inverted_index.issue | 17 |
| abstract_inverted_index.learn | 122 |
| abstract_inverted_index.might | 181 |
| abstract_inverted_index.minor | 31 |
| abstract_inverted_index.model | 36, 110 |
| abstract_inverted_index.size. | 114 |
| abstract_inverted_index.these | 168 |
| abstract_inverted_index.vital | 16 |
| abstract_inverted_index.better | 173 |
| abstract_inverted_index.binary | 88, 104 |
| abstract_inverted_index.cancer | 95, 152, 195 |
| abstract_inverted_index.effect | 160 |
| abstract_inverted_index.highly | 22, 56, 86 |
| abstract_inverted_index.method | 47 |
| abstract_inverted_index.models | 154 |
| abstract_inverted_index.power. | 40 |
| abstract_inverted_index.select | 137 |
| abstract_inverted_index.sparse | 23, 57, 87 |
| abstract_inverted_index.system | 10 |
| abstract_inverted_index.Lastly, | 144 |
| abstract_inverted_index.applied | 92, 146 |
| abstract_inverted_index.compact | 123 |
| abstract_inverted_index.complex | 9 |
| abstract_inverted_index.effects | 32 |
| abstract_inverted_index.extract | 52, 83 |
| abstract_inverted_index.feature | 148 |
| abstract_inverted_index.genetic | 24 |
| abstract_inverted_index.improve | 174 |
| abstract_inverted_index.models. | 163 |
| abstract_inverted_index.optimal | 139 |
| abstract_inverted_index.patient | 201 |
| abstract_inverted_index.problem | 134 |
| abstract_inverted_index.process | 135 |
| abstract_inverted_index.provide | 70 |
| abstract_inverted_index.reduced | 100, 127 |
| abstract_inverted_index.results | 165 |
| abstract_inverted_index.Genomics | 0 |
| abstract_inverted_index.benefits | 71 |
| abstract_inverted_index.everyone | 192 |
| abstract_inverted_index.features | 53, 124, 171 |
| abstract_inverted_index.genomics | 25, 205 |
| abstract_inverted_index.genotype | 75, 89 |
| abstract_inverted_index.involved | 193 |
| abstract_inverted_index.learning | 46 |
| abstract_inverted_index.moderate | 113 |
| abstract_inverted_index.original | 177 |
| abstract_inverted_index.problem. | 185 |
| abstract_inverted_index.strategy | 81 |
| abstract_inverted_index.developed | 78 |
| abstract_inverted_index.evaluated | 156 |
| abstract_inverted_index.extracted | 142 |
| abstract_inverted_index.features. | 143 |
| abstract_inverted_index.improving | 38 |
| abstract_inverted_index.indicated | 166 |
| abstract_inverted_index.integrate | 21 |
| abstract_inverted_index.involving | 1 |
| abstract_inverted_index.model’s | 176 |
| abstract_inverted_index.performed | 131 |
| abstract_inverted_index.research, | 196 |
| abstract_inverted_index.thousands | 4 |
| abstract_inverted_index.trainable | 117 |
| abstract_inverted_index.biomarkers | 105 |
| abstract_inverted_index.compressed | 169 |
| abstract_inverted_index.continuous | 62 |
| abstract_inverted_index.non-linear | 66 |
| abstract_inverted_index.phenotype. | 12 |
| abstract_inverted_index.prediction | 35, 39 |
| abstract_inverted_index.predictive | 159, 178 |
| abstract_inverted_index.prognosis. | 96 |
| abstract_inverted_index.prognostic | 153 |
| abstract_inverted_index.reduction, | 198 |
| abstract_inverted_index.regression | 109 |
| abstract_inverted_index.treatment, | 199 |
| abstract_inverted_index.combination | 140, 149 |
| abstract_inverted_index.determining | 11 |
| abstract_inverted_index.dichotomous | 58 |
| abstract_inverted_index.information | 84 |
| abstract_inverted_index.integrating | 204 |
| abstract_inverted_index.interesting | 14 |
| abstract_inverted_index.multi-stage | 80 |
| abstract_inverted_index.overfitting | 184 |
| abstract_inverted_index.performance | 179 |
| abstract_inverted_index.univariable | 108 |
| abstract_inverted_index.auto-encoder | 118 |
| abstract_inverted_index.enlightening | 190 |
| abstract_inverted_index.transforming | 55 |
| abstract_inverted_index.Specifically, | 97 |
| abstract_inverted_index.transformation | 170 |
| abstract_inverted_index.lower-dimensional | 61 |
| abstract_inverted_index.prediction-associated | 74 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5083525893, https://openalex.org/A5079281855 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I115592961, https://openalex.org/I3923682, https://openalex.org/I4210110396 |
| citation_normalized_percentile.value | 0.67649178 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |