Efficient first principles based modeling via machine learning: from simple representations to high entropy materials Article Swipe
Kangming Li
,
Kamal Choudhary
,
Brian DeCost
,
Michael T. Greenwood
,
Jason Hattrick‐Simpers
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1039/d4ta00982g
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1039/d4ta00982g
Generalization performance of machine learning models: (upper panel) generalization from small ordered to large disordered structures (SQS); (lower panel) generalization from low-order to high-order systems.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1039/d4ta00982g
- OA Status
- green
- Cited By
- 14
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393212539
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393212539Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1039/d4ta00982gDigital Object Identifier
- Title
-
Efficient first principles based modeling via machine learning: from simple representations to high entropy materialsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Kangming Li, Kamal Choudhary, Brian DeCost, Michael T. Greenwood, Jason Hattrick‐SimpersList of authors in order
- Landing page
-
https://doi.org/10.1039/d4ta00982gPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.15579Direct OA link when available
- Concepts
-
Computer science, Generalization, Density functional theory, Entropy (arrow of time), Simple (philosophy), Machine learning, Theoretical computer science, Artificial intelligence, Mathematics, Computational chemistry, Chemistry, Mathematical analysis, Physics, Epistemology, Quantum mechanics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393212539 |
|---|---|
| doi | https://doi.org/10.1039/d4ta00982g |
| ids.doi | https://doi.org/10.1039/d4ta00982g |
| ids.openalex | https://openalex.org/W4393212539 |
| fwci | 2.37081845 |
| type | preprint |
| title | Efficient first principles based modeling via machine learning: from simple representations to high entropy materials |
| biblio.issue | 21 |
| biblio.volume | 12 |
| biblio.last_page | 12422 |
| biblio.first_page | 12412 |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T13552 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9860000014305115 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced Materials Characterization Techniques |
| topics[2].id | https://openalex.org/T11143 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9794999957084656 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | High Entropy Alloys Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6508073806762695 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C177148314 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5602545142173767 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[1].display_name | Generalization |
| concepts[2].id | https://openalex.org/C152365726 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4829084873199463 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1048589 |
| concepts[2].display_name | Density functional theory |
| concepts[3].id | https://openalex.org/C106301342 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4771922826766968 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4117933 |
| concepts[3].display_name | Entropy (arrow of time) |
| concepts[4].id | https://openalex.org/C2780586882 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4481121003627777 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[4].display_name | Simple (philosophy) |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43456465005874634 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C80444323 |
| concepts[6].level | 1 |
| concepts[6].score | 0.41061317920684814 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[6].display_name | Theoretical computer science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4012008607387543 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.16701343655586243 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C147597530 |
| concepts[9].level | 1 |
| concepts[9].score | 0.14776676893234253 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q369472 |
| concepts[9].display_name | Computational chemistry |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.11519387364387512 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C111472728 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[13].display_name | Epistemology |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6508073806762695 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/generalization |
| keywords[1].score | 0.5602545142173767 |
| keywords[1].display_name | Generalization |
| keywords[2].id | https://openalex.org/keywords/density-functional-theory |
| keywords[2].score | 0.4829084873199463 |
| keywords[2].display_name | Density functional theory |
| keywords[3].id | https://openalex.org/keywords/entropy |
| keywords[3].score | 0.4771922826766968 |
| keywords[3].display_name | Entropy (arrow of time) |
| keywords[4].id | https://openalex.org/keywords/simple |
| keywords[4].score | 0.4481121003627777 |
| keywords[4].display_name | Simple (philosophy) |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.43456465005874634 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[6].score | 0.41061317920684814 |
| keywords[6].display_name | Theoretical computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4012008607387543 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.16701343655586243 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/computational-chemistry |
| keywords[9].score | 0.14776676893234253 |
| keywords[9].display_name | Computational chemistry |
| keywords[10].id | https://openalex.org/keywords/chemistry |
| keywords[10].score | 0.11519387364387512 |
| keywords[10].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.1039/d4ta00982g |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S2764437742 |
| locations[0].source.issn | 2050-7488, 2050-7496 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2050-7488 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Materials Chemistry A |
| locations[0].source.host_organization | https://openalex.org/P4310320556 |
| locations[0].source.host_organization_name | Royal Society of Chemistry |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320556 |
| locations[0].source.host_organization_lineage_names | Royal Society of Chemistry |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Materials Chemistry A |
| locations[0].landing_page_url | https://doi.org/10.1039/d4ta00982g |
| locations[1].id | pmh:oai:arXiv.org:2403.15579 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2403.15579 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2403.15579 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5055766485 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4471-8527 |
| authorships[0].author.display_name | Kangming Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Kangming |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5019215236 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9737-8074 |
| authorships[1].author.display_name | Kamal Choudhary |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Choudhary, Kamal |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5053080365 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3459-5888 |
| authorships[2].author.display_name | Brian DeCost |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | DeCost, Brian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5069201034 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0890-3434 |
| authorships[3].author.display_name | Michael T. Greenwood |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Greenwood, Michael |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5073635313 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2937-3188 |
| authorships[4].author.display_name | Jason Hattrick‐Simpers |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hattrick-Simpers, Jason |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.15579 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient first principles based modeling via machine learning: from simple representations to high entropy materials |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W1585007175, https://openalex.org/W2382521049, https://openalex.org/W3162204513, https://openalex.org/W2144385241, https://openalex.org/W4300101996, https://openalex.org/W2165950148, https://openalex.org/W4253593777, https://openalex.org/W2951497643, https://openalex.org/W2371138613, https://openalex.org/W2048963458 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.15579 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.15579 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.15579 |
| primary_location.id | doi:10.1039/d4ta00982g |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S2764437742 |
| primary_location.source.issn | 2050-7488, 2050-7496 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2050-7488 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Materials Chemistry A |
| primary_location.source.host_organization | https://openalex.org/P4310320556 |
| primary_location.source.host_organization_name | Royal Society of Chemistry |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320556 |
| primary_location.source.host_organization_lineage_names | Royal Society of Chemistry |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Materials Chemistry A |
| primary_location.landing_page_url | https://doi.org/10.1039/d4ta00982g |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2888156062, https://openalex.org/W2534691303, https://openalex.org/W2951539866, https://openalex.org/W3148416643, https://openalex.org/W3107591566, https://openalex.org/W3162678041, https://openalex.org/W3111500033, https://openalex.org/W3163103290, https://openalex.org/W4224281191, https://openalex.org/W3084235614, https://openalex.org/W2922127369, https://openalex.org/W3047911553, https://openalex.org/W4304690568, https://openalex.org/W2134329894, https://openalex.org/W1992985800, https://openalex.org/W1976492731, https://openalex.org/W3039596418, https://openalex.org/W3093999435, https://openalex.org/W2808754086, https://openalex.org/W1980370048, https://openalex.org/W2054812570, https://openalex.org/W4382447958, https://openalex.org/W3006680746, https://openalex.org/W3166560911, https://openalex.org/W4377139419, https://openalex.org/W2900696558, https://openalex.org/W3023659252, https://openalex.org/W2963606102, https://openalex.org/W2329495109, https://openalex.org/W4285088307, https://openalex.org/W4224129425, https://openalex.org/W4205977216, https://openalex.org/W4362700002, https://openalex.org/W4388567027, https://openalex.org/W2034097448, https://openalex.org/W2159357141, https://openalex.org/W2509907061, https://openalex.org/W2734520197, https://openalex.org/W2804431384, https://openalex.org/W2015197254, https://openalex.org/W3208687975, https://openalex.org/W4295846579, https://openalex.org/W2065382771, https://openalex.org/W2897682197, https://openalex.org/W2278970271, https://openalex.org/W4210385306, https://openalex.org/W4388540929, https://openalex.org/W4286895367, https://openalex.org/W3164305566, https://openalex.org/W2079105963, https://openalex.org/W2007395042, https://openalex.org/W2083222334, https://openalex.org/W1981368803, https://openalex.org/W2064807075, https://openalex.org/W2036113194, https://openalex.org/W2087640469, https://openalex.org/W2911964244, https://openalex.org/W3212512279, https://openalex.org/W2464725281, https://openalex.org/W4381586839, https://openalex.org/W2046505730, https://openalex.org/W3097576262, https://openalex.org/W4221154168, https://openalex.org/W4311686787, https://openalex.org/W2000760826, https://openalex.org/W4388562675, https://openalex.org/W2997959813, https://openalex.org/W2485840353, https://openalex.org/W2737776324, https://openalex.org/W4389132751 |
| referenced_works_count | 70 |
| abstract_inverted_index.of | 2 |
| abstract_inverted_index.to | 12, 22 |
| abstract_inverted_index.from | 9, 20 |
| abstract_inverted_index.large | 13 |
| abstract_inverted_index.small | 10 |
| abstract_inverted_index.(SQS); | 16 |
| abstract_inverted_index.(lower | 17 |
| abstract_inverted_index.(upper | 6 |
| abstract_inverted_index.panel) | 7, 18 |
| abstract_inverted_index.machine | 3 |
| abstract_inverted_index.models: | 5 |
| abstract_inverted_index.ordered | 11 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.systems. | 24 |
| abstract_inverted_index.low-order | 21 |
| abstract_inverted_index.disordered | 14 |
| abstract_inverted_index.high-order | 23 |
| abstract_inverted_index.structures | 15 |
| abstract_inverted_index.performance | 1 |
| abstract_inverted_index.Generalization | 0 |
| abstract_inverted_index.generalization | 8, 19 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.91348218 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |