Efficient Gearbox Fault Diagnosis Based on Improved Multi-Scale CNN with Lightweight Convolutional Attention Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25092636
As a core transmission component of modern industrial equipment, the operation status of the gearbox has a significant impact on the reliability and service life of major machinery. In this paper, we propose an intelligent diagnosis framework based on Empirical Mode Decomposition and multimodal feature co-optimization and innovatively construct a fault diagnosis model by fusing a multi-scale convolutional neural network and a lightweight convolutional attention model. The framework extracts the multi-band features of vibration signals through the improved multi-scale convolutional neural network, which significantly enhances adaptability to complex working conditions (variable rotational speed, strong noise); at the same time, the lightweight convolutional attention mechanism is used to replace the multi-attention of the traditional Transformer, which greatly reduces computational complexity while guaranteeing accuracy and realizes highly efficient, lightweight local–global feature modeling. The lightweight convolutional attention is adaptively captured by the dynamic convolutional kernel generation strategy to adaptively capture local features in the time domain, and combined with grouped convolution to enhance the computational efficiency further; in addition, parameterized revised linear units are introduced to retain fault-sensitive negative information, which enhances the model’s ability to detect weak faults. The experimental findings demonstrate that the proposed model achieves an accuracy greater than 98.9%, highlighting its exceptional diagnostic accuracy and robustness. Moreover, compared to other fault diagnosis methods, the model exhibits superior performance under complex working conditions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25092636
- https://www.mdpi.com/1424-8220/25/9/2636/pdf?version=1745309444
- OA Status
- gold
- Cited By
- 3
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409684197
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409684197Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25092636Digital Object Identifier
- Title
-
Efficient Gearbox Fault Diagnosis Based on Improved Multi-Scale CNN with Lightweight Convolutional AttentionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-22Full publication date if available
- Authors
-
Bin Yuan, Yong-Chao Li, Suifan ChenList of authors in order
- Landing page
-
https://doi.org/10.3390/s25092636Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/9/2636/pdf?version=1745309444Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/9/2636/pdf?version=1745309444Direct OA link when available
- Concepts
-
Convolutional neural network, Computer science, Artificial intelligence, Robustness (evolution), Feature extraction, Pattern recognition (psychology), Kernel (algebra), Mathematics, Biochemistry, Gene, Combinatorics, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409684197 |
|---|---|
| doi | https://doi.org/10.3390/s25092636 |
| ids.doi | https://doi.org/10.3390/s25092636 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40363076 |
| ids.openalex | https://openalex.org/W4409684197 |
| fwci | 11.15031977 |
| type | article |
| title | Efficient Gearbox Fault Diagnosis Based on Improved Multi-Scale CNN with Lightweight Convolutional Attention |
| biblio.issue | 9 |
| biblio.volume | 25 |
| biblio.last_page | 2636 |
| biblio.first_page | 2636 |
| topics[0].id | https://openalex.org/T10220 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Machine Fault Diagnosis Techniques |
| topics[1].id | https://openalex.org/T11062 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9882000088691711 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Gear and Bearing Dynamics Analysis |
| topics[2].id | https://openalex.org/T13891 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9641000032424927 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Engineering Diagnostics and Reliability |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8024142980575562 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7530864477157593 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5440624356269836 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5430904626846313 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C52622490 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46081939339637756 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[4].display_name | Feature extraction |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45069369673728943 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C74193536 |
| concepts[6].level | 2 |
| concepts[6].score | 0.450437068939209 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[6].display_name | Kernel (algebra) |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C55493867 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[8].display_name | Biochemistry |
| concepts[9].id | https://openalex.org/C104317684 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[9].display_name | Gene |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.8024142980575562 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7530864477157593 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5440624356269836 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.5430904626846313 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/feature-extraction |
| keywords[4].score | 0.46081939339637756 |
| keywords[4].display_name | Feature extraction |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.45069369673728943 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/kernel |
| keywords[6].score | 0.450437068939209 |
| keywords[6].display_name | Kernel (algebra) |
| language | en |
| locations[0].id | doi:10.3390/s25092636 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/9/2636/pdf?version=1745309444 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25092636 |
| locations[1].id | pmid:40363076 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40363076 |
| locations[2].id | pmh:oai:doaj.org/article:77233d7509a64fcd841144ef5df9d75b |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 9, p 2636 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/77233d7509a64fcd841144ef5df9d75b |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12073503 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12073503 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100740415 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1004-2354 |
| authorships[0].author.display_name | Bin Yuan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I168879160 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310013, China |
| authorships[0].institutions[0].id | https://openalex.org/I168879160 |
| authorships[0].institutions[0].ror | https://ror.org/05mx0wr29 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I168879160 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bin Yuan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310013, China |
| authorships[1].author.id | https://openalex.org/A5050777496 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yong-Chao Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I168879160 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310013, China |
| authorships[1].institutions[0].id | https://openalex.org/I168879160 |
| authorships[1].institutions[0].ror | https://ror.org/05mx0wr29 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I168879160 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yaoqi Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310013, China |
| authorships[2].author.id | https://openalex.org/A5025407151 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4627-2891 |
| authorships[2].author.display_name | Suifan Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I168879160 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310013, China |
| authorships[2].institutions[0].id | https://openalex.org/I168879160 |
| authorships[2].institutions[0].ror | https://ror.org/05mx0wr29 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I168879160 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhejiang University of Science and Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Suifan Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310013, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/9/2636/pdf?version=1745309444 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Gearbox Fault Diagnosis Based on Improved Multi-Scale CNN with Lightweight Convolutional Attention |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10220 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Machine Fault Diagnosis Techniques |
| related_works | https://openalex.org/W1996690921, https://openalex.org/W2601157893, https://openalex.org/W2373006798, https://openalex.org/W2131735617, https://openalex.org/W2056912418, https://openalex.org/W2033213769, https://openalex.org/W4312376745, https://openalex.org/W2136016640, https://openalex.org/W2049538278, https://openalex.org/W2886173746 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25092636 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/9/2636/pdf?version=1745309444 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25092636 |
| primary_location.id | doi:10.3390/s25092636 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/9/2636/pdf?version=1745309444 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25092636 |
| publication_date | 2025-04-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6854592782, https://openalex.org/W4288068833, https://openalex.org/W3176041833, https://openalex.org/W4398244166, https://openalex.org/W3080532600, https://openalex.org/W4403731340, https://openalex.org/W4400386246, https://openalex.org/W4366609190, https://openalex.org/W3116250684, https://openalex.org/W2978144367, https://openalex.org/W4400823921, https://openalex.org/W3015173390, https://openalex.org/W4386028682, https://openalex.org/W4316654916, https://openalex.org/W2007221293, https://openalex.org/W3011995351, https://openalex.org/W2978219032, https://openalex.org/W2003205626, https://openalex.org/W3199798098, https://openalex.org/W2884585870, https://openalex.org/W4392016375, https://openalex.org/W4362732946, https://openalex.org/W4387611015, https://openalex.org/W4381572229, https://openalex.org/W3004916191, https://openalex.org/W6806504485, https://openalex.org/W4383315415, https://openalex.org/W4293704625, https://openalex.org/W3025177399, https://openalex.org/W4321327604, https://openalex.org/W4296252903, https://openalex.org/W3096932637, https://openalex.org/W4387095353, https://openalex.org/W4213018270, https://openalex.org/W3190262421, https://openalex.org/W4205886591, https://openalex.org/W4383618501 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 1, 16, 49, 55, 61 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.an | 33, 195 |
| abstract_inverted_index.at | 95 |
| abstract_inverted_index.by | 53, 137 |
| abstract_inverted_index.in | 149, 164 |
| abstract_inverted_index.is | 104, 134 |
| abstract_inverted_index.of | 5, 12, 25, 72, 110 |
| abstract_inverted_index.on | 19, 38 |
| abstract_inverted_index.to | 86, 106, 144, 158, 172, 182, 209 |
| abstract_inverted_index.we | 31 |
| abstract_inverted_index.The | 66, 130, 186 |
| abstract_inverted_index.and | 22, 42, 46, 60, 122, 153, 205 |
| abstract_inverted_index.are | 170 |
| abstract_inverted_index.has | 15 |
| abstract_inverted_index.its | 201 |
| abstract_inverted_index.the | 9, 13, 20, 69, 76, 96, 99, 108, 111, 138, 150, 160, 179, 191, 214 |
| abstract_inverted_index.Mode | 40 |
| abstract_inverted_index.core | 2 |
| abstract_inverted_index.life | 24 |
| abstract_inverted_index.same | 97 |
| abstract_inverted_index.than | 198 |
| abstract_inverted_index.that | 190 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.time | 151 |
| abstract_inverted_index.used | 105 |
| abstract_inverted_index.weak | 184 |
| abstract_inverted_index.with | 155 |
| abstract_inverted_index.based | 37 |
| abstract_inverted_index.fault | 50, 211 |
| abstract_inverted_index.local | 147 |
| abstract_inverted_index.major | 26 |
| abstract_inverted_index.model | 52, 193, 215 |
| abstract_inverted_index.other | 210 |
| abstract_inverted_index.time, | 98 |
| abstract_inverted_index.under | 219 |
| abstract_inverted_index.units | 169 |
| abstract_inverted_index.which | 82, 114, 177 |
| abstract_inverted_index.while | 119 |
| abstract_inverted_index.98.9%, | 199 |
| abstract_inverted_index.detect | 183 |
| abstract_inverted_index.fusing | 54 |
| abstract_inverted_index.highly | 124 |
| abstract_inverted_index.impact | 18 |
| abstract_inverted_index.kernel | 141 |
| abstract_inverted_index.linear | 168 |
| abstract_inverted_index.model. | 65 |
| abstract_inverted_index.modern | 6 |
| abstract_inverted_index.neural | 58, 80 |
| abstract_inverted_index.paper, | 30 |
| abstract_inverted_index.retain | 173 |
| abstract_inverted_index.speed, | 92 |
| abstract_inverted_index.status | 11 |
| abstract_inverted_index.strong | 93 |
| abstract_inverted_index.ability | 181 |
| abstract_inverted_index.capture | 146 |
| abstract_inverted_index.complex | 87, 220 |
| abstract_inverted_index.domain, | 152 |
| abstract_inverted_index.dynamic | 139 |
| abstract_inverted_index.enhance | 159 |
| abstract_inverted_index.faults. | 185 |
| abstract_inverted_index.feature | 44, 128 |
| abstract_inverted_index.gearbox | 14 |
| abstract_inverted_index.greater | 197 |
| abstract_inverted_index.greatly | 115 |
| abstract_inverted_index.grouped | 156 |
| abstract_inverted_index.network | 59 |
| abstract_inverted_index.noise); | 94 |
| abstract_inverted_index.propose | 32 |
| abstract_inverted_index.reduces | 116 |
| abstract_inverted_index.replace | 107 |
| abstract_inverted_index.revised | 167 |
| abstract_inverted_index.service | 23 |
| abstract_inverted_index.signals | 74 |
| abstract_inverted_index.through | 75 |
| abstract_inverted_index.working | 88, 221 |
| abstract_inverted_index.accuracy | 121, 196, 204 |
| abstract_inverted_index.achieves | 194 |
| abstract_inverted_index.captured | 136 |
| abstract_inverted_index.combined | 154 |
| abstract_inverted_index.compared | 208 |
| abstract_inverted_index.enhances | 84, 178 |
| abstract_inverted_index.exhibits | 216 |
| abstract_inverted_index.extracts | 68 |
| abstract_inverted_index.features | 71, 148 |
| abstract_inverted_index.findings | 188 |
| abstract_inverted_index.further; | 163 |
| abstract_inverted_index.improved | 77 |
| abstract_inverted_index.methods, | 213 |
| abstract_inverted_index.negative | 175 |
| abstract_inverted_index.network, | 81 |
| abstract_inverted_index.proposed | 192 |
| abstract_inverted_index.realizes | 123 |
| abstract_inverted_index.strategy | 143 |
| abstract_inverted_index.superior | 217 |
| abstract_inverted_index.(variable | 90 |
| abstract_inverted_index.Empirical | 39 |
| abstract_inverted_index.Moreover, | 207 |
| abstract_inverted_index.addition, | 165 |
| abstract_inverted_index.attention | 64, 102, 133 |
| abstract_inverted_index.component | 4 |
| abstract_inverted_index.construct | 48 |
| abstract_inverted_index.diagnosis | 35, 51, 212 |
| abstract_inverted_index.framework | 36, 67 |
| abstract_inverted_index.mechanism | 103 |
| abstract_inverted_index.modeling. | 129 |
| abstract_inverted_index.model’s | 180 |
| abstract_inverted_index.operation | 10 |
| abstract_inverted_index.vibration | 73 |
| abstract_inverted_index.adaptively | 135, 145 |
| abstract_inverted_index.complexity | 118 |
| abstract_inverted_index.conditions | 89 |
| abstract_inverted_index.diagnostic | 203 |
| abstract_inverted_index.efficiency | 162 |
| abstract_inverted_index.efficient, | 125 |
| abstract_inverted_index.equipment, | 8 |
| abstract_inverted_index.generation | 142 |
| abstract_inverted_index.industrial | 7 |
| abstract_inverted_index.introduced | 171 |
| abstract_inverted_index.machinery. | 27 |
| abstract_inverted_index.multi-band | 70 |
| abstract_inverted_index.multimodal | 43 |
| abstract_inverted_index.rotational | 91 |
| abstract_inverted_index.conditions. | 222 |
| abstract_inverted_index.convolution | 157 |
| abstract_inverted_index.demonstrate | 189 |
| abstract_inverted_index.exceptional | 202 |
| abstract_inverted_index.intelligent | 34 |
| abstract_inverted_index.lightweight | 62, 100, 126, 131 |
| abstract_inverted_index.multi-scale | 56, 78 |
| abstract_inverted_index.performance | 218 |
| abstract_inverted_index.reliability | 21 |
| abstract_inverted_index.robustness. | 206 |
| abstract_inverted_index.significant | 17 |
| abstract_inverted_index.traditional | 112 |
| abstract_inverted_index.Transformer, | 113 |
| abstract_inverted_index.adaptability | 85 |
| abstract_inverted_index.experimental | 187 |
| abstract_inverted_index.guaranteeing | 120 |
| abstract_inverted_index.highlighting | 200 |
| abstract_inverted_index.information, | 176 |
| abstract_inverted_index.innovatively | 47 |
| abstract_inverted_index.transmission | 3 |
| abstract_inverted_index.Decomposition | 41 |
| abstract_inverted_index.computational | 117, 161 |
| abstract_inverted_index.convolutional | 57, 63, 79, 101, 132, 140 |
| abstract_inverted_index.parameterized | 166 |
| abstract_inverted_index.significantly | 83 |
| abstract_inverted_index.local–global | 127 |
| abstract_inverted_index.co-optimization | 45 |
| abstract_inverted_index.fault-sensitive | 174 |
| abstract_inverted_index.multi-attention | 109 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.95974711 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |