Efficient high throughput SARS-CoV-2 testing to detect asymptomatic carriers Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1101/2020.04.14.20064618
The COVID-19 pandemic is rapidly spreading throughout the world. Recent reports suggest that 10-30% of SARS-CoV-2 infected patients are asymptomatic. Other studies report that some subjects have significant viral shedding prior to symptom onset. Since both asymptomatic and pre-symptomatic subjects can spread the disease, identifying such individuals is critical for effective control of the SARS-CoV-2 pandemic. Therefore, there is an urgent need to increase diagnostic testing capabilities in order to also screen asymptomatic carriers. In fact, such tests will be routinely required until a vaccine is developed. Yet, a major bottleneck of managing the COVID-19 pandemic in many countries is diagnostic testing, due to limited laboratory capabilities as well as limited access to genome-extraction and Polymerase Chain Reaction (PCR) reagents. We developed P-BEST - a method for Pooling-Based Efficient SARS-CoV-2 Testing, using a non-adaptive group-testing approach, which significantly reduces the number of tests required to identify all positive subjects within a large set of samples. Instead of testing each sample separately, samples are pooled into groups and each pool is tested for SARS-CoV-2 using the standard clinically approved PCR-based diagnostic assay. Each sample is part of multiple pools, using a combinatorial pooling strategy based on compressed sensing designed for maximizing the ability to identify all positive individuals. We evaluated P-BEST using leftover samples that were previously clinically tested for COVID-19. In our current proof-of-concept study we pooled 384 patient samples into 48 pools providing an 8-fold increase in testing efficiency. Five sets of 384 samples, containing 1-5 positive carriers were screened and all positive carriers in each set were correctly identified. P-BEST provides an efficient and easy-to-implement solution for increasing testing capacity that will work with any clinically approved genome-extraction and PCR-based diagnostic methodologies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2020.04.14.20064618
- https://www.medrxiv.org/content/medrxiv/early/2020/04/20/2020.04.14.20064618.full.pdf
- OA Status
- green
- Cited By
- 54
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3016584567
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3016584567Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2020.04.14.20064618Digital Object Identifier
- Title
-
Efficient high throughput SARS-CoV-2 testing to detect asymptomatic carriersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-20Full publication date if available
- Authors
-
Noam Shental, Shlomia Levy, Vered Wuvshet, Shosh Skorniakov, Yonat Shemer‐Avni, Angel Porgador, Tomer HertzList of authors in order
- Landing page
-
https://doi.org/10.1101/2020.04.14.20064618Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2020/04/20/2020.04.14.20064618.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2020/04/20/2020.04.14.20064618.full.pdfDirect OA link when available
- Concepts
-
Asymptomatic, Pooling, Coronavirus disease 2019 (COVID-19), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Pandemic, Medicine, Group testing, Virology, Asymptomatic carrier, Bottleneck, Disease, Computer science, Internal medicine, Infectious disease (medical specialty), Artificial intelligence, Mathematics, Embedded system, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
54Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 2, 2022: 8, 2021: 12, 2020: 31Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3016584567 |
|---|---|
| doi | https://doi.org/10.1101/2020.04.14.20064618 |
| ids.doi | https://doi.org/10.1101/2020.04.14.20064618 |
| ids.mag | 3016584567 |
| ids.openalex | https://openalex.org/W3016584567 |
| fwci | 1.52040501 |
| type | preprint |
| title | Efficient high throughput SARS-CoV-2 testing to detect asymptomatic carriers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11754 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2725 |
| topics[0].subfield.display_name | Infectious Diseases |
| topics[0].display_name | SARS-CoV-2 detection and testing |
| topics[1].id | https://openalex.org/T10207 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Advanced biosensing and bioanalysis techniques |
| topics[2].id | https://openalex.org/T11393 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Biosensors and Analytical Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777910003 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7558802366256714 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1707292 |
| concepts[0].display_name | Asymptomatic |
| concepts[1].id | https://openalex.org/C70437156 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7374784350395203 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[1].display_name | Pooling |
| concepts[2].id | https://openalex.org/C3008058167 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6103477478027344 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[2].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[3].id | https://openalex.org/C3007834351 |
| concepts[3].level | 5 |
| concepts[3].score | 0.6063768863677979 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[3].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[4].id | https://openalex.org/C89623803 |
| concepts[4].level | 5 |
| concepts[4].score | 0.5813717842102051 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12184 |
| concepts[4].display_name | Pandemic |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5531337857246399 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C177580056 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5483015179634094 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5611272 |
| concepts[6].display_name | Group testing |
| concepts[7].id | https://openalex.org/C159047783 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4871799349784851 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[7].display_name | Virology |
| concepts[8].id | https://openalex.org/C137916694 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4360814094543457 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1549382 |
| concepts[8].display_name | Asymptomatic carrier |
| concepts[9].id | https://openalex.org/C2780513914 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41592830419540405 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[9].display_name | Bottleneck |
| concepts[10].id | https://openalex.org/C2779134260 |
| concepts[10].level | 2 |
| concepts[10].score | 0.28573596477508545 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[10].display_name | Disease |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.24042803049087524 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C126322002 |
| concepts[12].level | 1 |
| concepts[12].score | 0.20446768403053284 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[12].display_name | Internal medicine |
| concepts[13].id | https://openalex.org/C524204448 |
| concepts[13].level | 3 |
| concepts[13].score | 0.15020573139190674 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[13].display_name | Infectious disease (medical specialty) |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11105406284332275 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.06759190559387207 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C149635348 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[16].display_name | Embedded system |
| concepts[17].id | https://openalex.org/C114614502 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[17].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/asymptomatic |
| keywords[0].score | 0.7558802366256714 |
| keywords[0].display_name | Asymptomatic |
| keywords[1].id | https://openalex.org/keywords/pooling |
| keywords[1].score | 0.7374784350395203 |
| keywords[1].display_name | Pooling |
| keywords[2].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[2].score | 0.6103477478027344 |
| keywords[2].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[3].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[3].score | 0.6063768863677979 |
| keywords[3].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[4].id | https://openalex.org/keywords/pandemic |
| keywords[4].score | 0.5813717842102051 |
| keywords[4].display_name | Pandemic |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.5531337857246399 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/group-testing |
| keywords[6].score | 0.5483015179634094 |
| keywords[6].display_name | Group testing |
| keywords[7].id | https://openalex.org/keywords/virology |
| keywords[7].score | 0.4871799349784851 |
| keywords[7].display_name | Virology |
| keywords[8].id | https://openalex.org/keywords/asymptomatic-carrier |
| keywords[8].score | 0.4360814094543457 |
| keywords[8].display_name | Asymptomatic carrier |
| keywords[9].id | https://openalex.org/keywords/bottleneck |
| keywords[9].score | 0.41592830419540405 |
| keywords[9].display_name | Bottleneck |
| keywords[10].id | https://openalex.org/keywords/disease |
| keywords[10].score | 0.28573596477508545 |
| keywords[10].display_name | Disease |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.24042803049087524 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/internal-medicine |
| keywords[12].score | 0.20446768403053284 |
| keywords[12].display_name | Internal medicine |
| keywords[13].id | https://openalex.org/keywords/infectious-disease |
| keywords[13].score | 0.15020573139190674 |
| keywords[13].display_name | Infectious disease (medical specialty) |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.11105406284332275 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.06759190559387207 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1101/2020.04.14.20064618 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2020/04/20/2020.04.14.20064618.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2020.04.14.20064618 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5086404465 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9645-3773 |
| authorships[0].author.display_name | Noam Shental |
| authorships[0].countries | IL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I164950643 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of computer science, Open University of Israel |
| authorships[0].institutions[0].id | https://openalex.org/I164950643 |
| authorships[0].institutions[0].ror | https://ror.org/027z64205 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I164950643 |
| authorships[0].institutions[0].country_code | IL |
| authorships[0].institutions[0].display_name | Open University of Israel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Noam Shental |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of computer science, Open University of Israel |
| authorships[1].author.id | https://openalex.org/A5059190788 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7469-148X |
| authorships[1].author.display_name | Shlomia Levy |
| authorships[1].countries | CZ, IL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I124227911, https://openalex.org/I4210099114 |
| authorships[1].affiliations[0].raw_affiliation_string | National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev |
| authorships[1].institutions[0].id | https://openalex.org/I4210099114 |
| authorships[1].institutions[0].ror | https://ror.org/00wzqmx94 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I202391551, https://openalex.org/I4210099114 |
| authorships[1].institutions[0].country_code | CZ |
| authorships[1].institutions[0].display_name | Czech Academy of Sciences, Institute of Biotechnology |
| authorships[1].institutions[1].id | https://openalex.org/I124227911 |
| authorships[1].institutions[1].ror | https://ror.org/05tkyf982 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I124227911 |
| authorships[1].institutions[1].country_code | IL |
| authorships[1].institutions[1].display_name | Ben-Gurion University of the Negev |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shlomia Levy |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev |
| authorships[2].author.id | https://openalex.org/A5024569321 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Vered Wuvshet |
| authorships[2].countries | CZ, IL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I124227911, https://openalex.org/I4210099114 |
| authorships[2].affiliations[0].raw_affiliation_string | National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev |
| authorships[2].institutions[0].id | https://openalex.org/I4210099114 |
| authorships[2].institutions[0].ror | https://ror.org/00wzqmx94 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I202391551, https://openalex.org/I4210099114 |
| authorships[2].institutions[0].country_code | CZ |
| authorships[2].institutions[0].display_name | Czech Academy of Sciences, Institute of Biotechnology |
| authorships[2].institutions[1].id | https://openalex.org/I124227911 |
| authorships[2].institutions[1].ror | https://ror.org/05tkyf982 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I124227911 |
| authorships[2].institutions[1].country_code | IL |
| authorships[2].institutions[1].display_name | Ben-Gurion University of the Negev |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vered Wuvshet |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev |
| authorships[3].author.id | https://openalex.org/A5079835153 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Shosh Skorniakov |
| authorships[3].countries | CZ, IL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I124227911, https://openalex.org/I4210099114 |
| authorships[3].affiliations[0].raw_affiliation_string | National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev |
| authorships[3].institutions[0].id | https://openalex.org/I4210099114 |
| authorships[3].institutions[0].ror | https://ror.org/00wzqmx94 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I202391551, https://openalex.org/I4210099114 |
| authorships[3].institutions[0].country_code | CZ |
| authorships[3].institutions[0].display_name | Czech Academy of Sciences, Institute of Biotechnology |
| authorships[3].institutions[1].id | https://openalex.org/I124227911 |
| authorships[3].institutions[1].ror | https://ror.org/05tkyf982 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I124227911 |
| authorships[3].institutions[1].country_code | IL |
| authorships[3].institutions[1].display_name | Ben-Gurion University of the Negev |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shosh Skorniakov |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev |
| authorships[4].author.id | https://openalex.org/A5056892922 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yonat Shemer‐Avni |
| authorships[4].countries | IL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2800633300 |
| authorships[4].affiliations[0].raw_affiliation_string | Soroka University Medical Center, Beer-Sheva, Israel |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I124227911 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Microbiology and Immunology, Ben-Gurion University of the Negev |
| authorships[4].institutions[0].id | https://openalex.org/I124227911 |
| authorships[4].institutions[0].ror | https://ror.org/05tkyf982 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I124227911 |
| authorships[4].institutions[0].country_code | IL |
| authorships[4].institutions[0].display_name | Ben-Gurion University of the Negev |
| authorships[4].institutions[1].id | https://openalex.org/I2800633300 |
| authorships[4].institutions[1].ror | https://ror.org/003sphj24 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I2800633300, https://openalex.org/I64767286 |
| authorships[4].institutions[1].country_code | IL |
| authorships[4].institutions[1].display_name | Soroka Medical Center |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yonat Shemer-Avni |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Soroka University Medical Center, Beer-Sheva, Israel |
| authorships[5].author.id | https://openalex.org/A5037912517 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1540-4449 |
| authorships[5].author.display_name | Angel Porgador |
| authorships[5].countries | CZ, IL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I124227911, https://openalex.org/I4210099114 |
| authorships[5].affiliations[0].raw_affiliation_string | National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev |
| authorships[5].institutions[0].id | https://openalex.org/I4210099114 |
| authorships[5].institutions[0].ror | https://ror.org/00wzqmx94 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I202391551, https://openalex.org/I4210099114 |
| authorships[5].institutions[0].country_code | CZ |
| authorships[5].institutions[0].display_name | Czech Academy of Sciences, Institute of Biotechnology |
| authorships[5].institutions[1].id | https://openalex.org/I124227911 |
| authorships[5].institutions[1].ror | https://ror.org/05tkyf982 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I124227911 |
| authorships[5].institutions[1].country_code | IL |
| authorships[5].institutions[1].display_name | Ben-Gurion University of the Negev |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Angel Porgador |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev |
| authorships[6].author.id | https://openalex.org/A5004268970 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0561-1578 |
| authorships[6].author.display_name | Tomer Hertz |
| authorships[6].countries | CZ, IL, US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210089486, https://openalex.org/I4210127473 |
| authorships[6].affiliations[0].raw_affiliation_string | Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I124227911, https://openalex.org/I4210099114 |
| authorships[6].affiliations[1].raw_affiliation_string | National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev |
| authorships[6].institutions[0].id | https://openalex.org/I4210099114 |
| authorships[6].institutions[0].ror | https://ror.org/00wzqmx94 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I202391551, https://openalex.org/I4210099114 |
| authorships[6].institutions[0].country_code | CZ |
| authorships[6].institutions[0].display_name | Czech Academy of Sciences, Institute of Biotechnology |
| authorships[6].institutions[1].id | https://openalex.org/I124227911 |
| authorships[6].institutions[1].ror | https://ror.org/05tkyf982 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I124227911 |
| authorships[6].institutions[1].country_code | IL |
| authorships[6].institutions[1].display_name | Ben-Gurion University of the Negev |
| authorships[6].institutions[2].id | https://openalex.org/I4210127473 |
| authorships[6].institutions[2].ror | https://ror.org/03fbwjm33 |
| authorships[6].institutions[2].type | nonprofit |
| authorships[6].institutions[2].lineage | https://openalex.org/I4210127473 |
| authorships[6].institutions[2].country_code | US |
| authorships[6].institutions[2].display_name | Cancer Research Center |
| authorships[6].institutions[3].id | https://openalex.org/I4210089486 |
| authorships[6].institutions[3].ror | https://ror.org/007ps6h72 |
| authorships[6].institutions[3].type | nonprofit |
| authorships[6].institutions[3].lineage | https://openalex.org/I4210089486 |
| authorships[6].institutions[3].country_code | US |
| authorships[6].institutions[3].display_name | Fred Hutch Cancer Center |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Tomer Hertz |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2020/04/20/2020.04.14.20064618.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient high throughput SARS-CoV-2 testing to detect asymptomatic carriers |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11754 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2725 |
| primary_topic.subfield.display_name | Infectious Diseases |
| primary_topic.display_name | SARS-CoV-2 detection and testing |
| related_works | https://openalex.org/W3090123594, https://openalex.org/W4298106763, https://openalex.org/W3208673741, https://openalex.org/W3021827535, https://openalex.org/W3193495136, https://openalex.org/W3044936706, https://openalex.org/W3108505360, https://openalex.org/W3013276559, https://openalex.org/W3047351398, https://openalex.org/W3045505819 |
| cited_by_count | 54 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 12 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 31 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2020.04.14.20064618 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2020/04/20/2020.04.14.20064618.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2020.04.14.20064618 |
| primary_location.id | doi:10.1101/2020.04.14.20064618 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2020/04/20/2020.04.14.20064618.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2020.04.14.20064618 |
| publication_date | 2020-04-20 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3008696669, https://openalex.org/W3007170977, https://openalex.org/W3010781325, https://openalex.org/W3006961006, https://openalex.org/W2142707529, https://openalex.org/W2295307920, https://openalex.org/W4298949291, https://openalex.org/W1975680434, https://openalex.org/W2167973519, https://openalex.org/W2166754606, https://openalex.org/W2118653712, https://openalex.org/W2109449402, https://openalex.org/W2868672058, https://openalex.org/W3004239190, https://openalex.org/W3006248666, https://openalex.org/W3012188173, https://openalex.org/W3012284084, https://openalex.org/W1968160142 |
| referenced_works_count | 18 |
| abstract_inverted_index.- | 124 |
| abstract_inverted_index.a | 84, 89, 125, 133, 151, 190 |
| abstract_inverted_index.48 | 232 |
| abstract_inverted_index.In | 75, 221 |
| abstract_inverted_index.We | 121, 208 |
| abstract_inverted_index.an | 60, 235, 264 |
| abstract_inverted_index.as | 108, 110 |
| abstract_inverted_index.be | 80 |
| abstract_inverted_index.in | 68, 97, 238, 256 |
| abstract_inverted_index.is | 4, 48, 59, 86, 100, 170, 184 |
| abstract_inverted_index.of | 15, 53, 92, 142, 154, 157, 186, 243 |
| abstract_inverted_index.on | 195 |
| abstract_inverted_index.to | 32, 63, 70, 104, 113, 145, 203 |
| abstract_inverted_index.we | 226 |
| abstract_inverted_index.1-5 | 247 |
| abstract_inverted_index.384 | 228, 244 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.all | 147, 205, 253 |
| abstract_inverted_index.and | 38, 115, 167, 252, 266, 281 |
| abstract_inverted_index.any | 277 |
| abstract_inverted_index.are | 19, 163 |
| abstract_inverted_index.can | 41 |
| abstract_inverted_index.due | 103 |
| abstract_inverted_index.for | 50, 127, 172, 199, 219, 269 |
| abstract_inverted_index.our | 222 |
| abstract_inverted_index.set | 153, 258 |
| abstract_inverted_index.the | 8, 43, 54, 94, 140, 175, 201 |
| abstract_inverted_index.Each | 182 |
| abstract_inverted_index.Five | 241 |
| abstract_inverted_index.Yet, | 88 |
| abstract_inverted_index.also | 71 |
| abstract_inverted_index.both | 36 |
| abstract_inverted_index.each | 159, 168, 257 |
| abstract_inverted_index.have | 27 |
| abstract_inverted_index.into | 165, 231 |
| abstract_inverted_index.many | 98 |
| abstract_inverted_index.need | 62 |
| abstract_inverted_index.part | 185 |
| abstract_inverted_index.pool | 169 |
| abstract_inverted_index.sets | 242 |
| abstract_inverted_index.some | 25 |
| abstract_inverted_index.such | 46, 77 |
| abstract_inverted_index.that | 13, 24, 214, 273 |
| abstract_inverted_index.well | 109 |
| abstract_inverted_index.were | 215, 250, 259 |
| abstract_inverted_index.will | 79, 274 |
| abstract_inverted_index.with | 276 |
| abstract_inverted_index.work | 275 |
| abstract_inverted_index.(PCR) | 119 |
| abstract_inverted_index.Chain | 117 |
| abstract_inverted_index.Other | 21 |
| abstract_inverted_index.Since | 35 |
| abstract_inverted_index.based | 194 |
| abstract_inverted_index.fact, | 76 |
| abstract_inverted_index.large | 152 |
| abstract_inverted_index.major | 90 |
| abstract_inverted_index.order | 69 |
| abstract_inverted_index.pools | 233 |
| abstract_inverted_index.prior | 31 |
| abstract_inverted_index.study | 225 |
| abstract_inverted_index.tests | 78, 143 |
| abstract_inverted_index.there | 58 |
| abstract_inverted_index.until | 83 |
| abstract_inverted_index.using | 132, 174, 189, 211 |
| abstract_inverted_index.viral | 29 |
| abstract_inverted_index.which | 137 |
| abstract_inverted_index.10-30% | 14 |
| abstract_inverted_index.8-fold | 236 |
| abstract_inverted_index.P-BEST | 123, 210, 262 |
| abstract_inverted_index.Recent | 10 |
| abstract_inverted_index.access | 112 |
| abstract_inverted_index.assay. | 181 |
| abstract_inverted_index.groups | 166 |
| abstract_inverted_index.method | 126 |
| abstract_inverted_index.number | 141 |
| abstract_inverted_index.onset. | 34 |
| abstract_inverted_index.pooled | 164, 227 |
| abstract_inverted_index.pools, | 188 |
| abstract_inverted_index.report | 23 |
| abstract_inverted_index.sample | 160, 183 |
| abstract_inverted_index.screen | 72 |
| abstract_inverted_index.spread | 42 |
| abstract_inverted_index.tested | 171, 218 |
| abstract_inverted_index.urgent | 61 |
| abstract_inverted_index.within | 150 |
| abstract_inverted_index.world. | 9 |
| abstract_inverted_index.Instead | 156 |
| abstract_inverted_index.ability | 202 |
| abstract_inverted_index.control | 52 |
| abstract_inverted_index.current | 223 |
| abstract_inverted_index.limited | 105, 111 |
| abstract_inverted_index.patient | 229 |
| abstract_inverted_index.pooling | 192 |
| abstract_inverted_index.rapidly | 5 |
| abstract_inverted_index.reduces | 139 |
| abstract_inverted_index.reports | 11 |
| abstract_inverted_index.samples | 162, 213, 230 |
| abstract_inverted_index.sensing | 197 |
| abstract_inverted_index.studies | 22 |
| abstract_inverted_index.suggest | 12 |
| abstract_inverted_index.symptom | 33 |
| abstract_inverted_index.testing | 66, 158, 239, 271 |
| abstract_inverted_index.vaccine | 85 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.COVID-19 | 2, 95 |
| abstract_inverted_index.Reaction | 118 |
| abstract_inverted_index.Testing, | 131 |
| abstract_inverted_index.approved | 178, 279 |
| abstract_inverted_index.capacity | 272 |
| abstract_inverted_index.carriers | 249, 255 |
| abstract_inverted_index.critical | 49 |
| abstract_inverted_index.designed | 198 |
| abstract_inverted_index.disease, | 44 |
| abstract_inverted_index.identify | 146, 204 |
| abstract_inverted_index.increase | 64, 237 |
| abstract_inverted_index.infected | 17 |
| abstract_inverted_index.leftover | 212 |
| abstract_inverted_index.managing | 93 |
| abstract_inverted_index.multiple | 187 |
| abstract_inverted_index.pandemic | 3, 96 |
| abstract_inverted_index.patients | 18 |
| abstract_inverted_index.positive | 148, 206, 248, 254 |
| abstract_inverted_index.provides | 263 |
| abstract_inverted_index.required | 82, 144 |
| abstract_inverted_index.samples, | 245 |
| abstract_inverted_index.samples. | 155 |
| abstract_inverted_index.screened | 251 |
| abstract_inverted_index.shedding | 30 |
| abstract_inverted_index.solution | 268 |
| abstract_inverted_index.standard | 176 |
| abstract_inverted_index.strategy | 193 |
| abstract_inverted_index.subjects | 26, 40, 149 |
| abstract_inverted_index.testing, | 102 |
| abstract_inverted_index.COVID-19. | 220 |
| abstract_inverted_index.Efficient | 129 |
| abstract_inverted_index.PCR-based | 179, 282 |
| abstract_inverted_index.approach, | 136 |
| abstract_inverted_index.carriers. | 74 |
| abstract_inverted_index.correctly | 260 |
| abstract_inverted_index.countries | 99 |
| abstract_inverted_index.developed | 122 |
| abstract_inverted_index.effective | 51 |
| abstract_inverted_index.efficient | 265 |
| abstract_inverted_index.evaluated | 209 |
| abstract_inverted_index.pandemic. | 56 |
| abstract_inverted_index.providing | 234 |
| abstract_inverted_index.reagents. | 120 |
| abstract_inverted_index.routinely | 81 |
| abstract_inverted_index.spreading | 6 |
| abstract_inverted_index.Polymerase | 116 |
| abstract_inverted_index.SARS-CoV-2 | 16, 55, 130, 173 |
| abstract_inverted_index.Therefore, | 57 |
| abstract_inverted_index.bottleneck | 91 |
| abstract_inverted_index.clinically | 177, 217, 278 |
| abstract_inverted_index.compressed | 196 |
| abstract_inverted_index.containing | 246 |
| abstract_inverted_index.developed. | 87 |
| abstract_inverted_index.diagnostic | 65, 101, 180, 283 |
| abstract_inverted_index.increasing | 270 |
| abstract_inverted_index.laboratory | 106 |
| abstract_inverted_index.maximizing | 200 |
| abstract_inverted_index.previously | 216 |
| abstract_inverted_index.throughout | 7 |
| abstract_inverted_index.efficiency. | 240 |
| abstract_inverted_index.identified. | 261 |
| abstract_inverted_index.identifying | 45 |
| abstract_inverted_index.individuals | 47 |
| abstract_inverted_index.separately, | 161 |
| abstract_inverted_index.significant | 28 |
| abstract_inverted_index.asymptomatic | 37, 73 |
| abstract_inverted_index.capabilities | 67, 107 |
| abstract_inverted_index.individuals. | 207 |
| abstract_inverted_index.non-adaptive | 134 |
| abstract_inverted_index.Pooling-Based | 128 |
| abstract_inverted_index.asymptomatic. | 20 |
| abstract_inverted_index.combinatorial | 191 |
| abstract_inverted_index.group-testing | 135 |
| abstract_inverted_index.significantly | 138 |
| abstract_inverted_index.methodologies. | 284 |
| abstract_inverted_index.pre-symptomatic | 39 |
| abstract_inverted_index.proof-of-concept | 224 |
| abstract_inverted_index.easy-to-implement | 267 |
| abstract_inverted_index.genome-extraction | 114, 280 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5004268970, https://openalex.org/A5086404465, https://openalex.org/A5037912517 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I124227911, https://openalex.org/I164950643, https://openalex.org/I4210089486, https://openalex.org/I4210099114, https://openalex.org/I4210127473 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.89855159 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |