Efficient Learning of Accurate Surrogates for Simulations of Complex Systems Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.2172/2377984
Machine learning methods are increasingly deployed to construct surrogate models for complex physical systems at a reduced computational cost. However, the predictive capability of these surrogates degrades in the presence of noisy, sparse, or dynamic data. We introduce an online learning method empowered by optimizer-driven sampling that has two advantages over current approaches: it ensures that all local extrema (including endpoints) of the model response surface are included in the training data and it employs a continuous validation and update process in which surrogates undergo retraining when their performance falls below a validity threshold. We find, using benchmark functions, that optimizer-directed sampling generally outperforms traditional sampling methods in terms of accuracy around local extrema even when the scoring metric is biased towards assessing overall accuracy. Finally, the application to dense nuclear matter demonstrates that highly accurate surrogates for a nuclear equation of state model can be reliably auto-generated from expensive calculations using few model evaluations.
Related Topics
- Type
- report
- Language
- en
- Landing Page
- https://doi.org/10.2172/2377984
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400174148
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400174148Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2172/2377984Digital Object Identifier
- Title
-
Efficient Learning of Accurate Surrogates for Simulations of Complex SystemsWork title
- Type
-
reportOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-05Full publication date if available
- Authors
-
A. Diaw, Michael McKerns, Irina Sagert, Liam Stanton, Michael S. MurilloList of authors in order
- Landing page
-
https://doi.org/10.2172/2377984Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/2377984Direct OA link when available
- Concepts
-
Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400174148 |
|---|---|
| doi | https://doi.org/10.2172/2377984 |
| ids.doi | https://doi.org/10.2172/2377984 |
| ids.openalex | https://openalex.org/W4400174148 |
| fwci | |
| type | report |
| title | Efficient Learning of Accurate Surrogates for Simulations of Complex Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12072 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9128999710083008 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Algorithms |
| topics[1].id | https://openalex.org/T12814 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9114000201225281 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Gaussian Processes and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5405693054199219 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3431452512741089 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5405693054199219 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.3431452512741089 |
| keywords[1].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.2172/2377984 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | report |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2172/2377984 |
| locations[1].id | pmh:oai:osti.gov:2377984 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/2377984 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5044155444 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6743-3255 |
| authorships[0].author.display_name | A. Diaw |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1343871089 |
| authorships[0].affiliations[0].raw_affiliation_string | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
| authorships[0].institutions[0].id | https://openalex.org/I1343871089 |
| authorships[0].institutions[0].ror | https://ror.org/01e41cf67 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I1343871089, https://openalex.org/I198811213, https://openalex.org/I4210120050 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Los Alamos National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdourahmane Diaw |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
| authorships[1].author.id | https://openalex.org/A5018453410 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8342-3778 |
| authorships[1].author.display_name | Michael McKerns |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1343871089 |
| authorships[1].affiliations[0].raw_affiliation_string | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
| authorships[1].institutions[0].id | https://openalex.org/I1343871089 |
| authorships[1].institutions[0].ror | https://ror.org/01e41cf67 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I1343871089, https://openalex.org/I198811213, https://openalex.org/I4210120050 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Los Alamos National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael McKerns |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
| authorships[2].author.id | https://openalex.org/A5089556928 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1487-0360 |
| authorships[2].author.display_name | Irina Sagert |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1343871089 |
| authorships[2].affiliations[0].raw_affiliation_string | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
| authorships[2].institutions[0].id | https://openalex.org/I1343871089 |
| authorships[2].institutions[0].ror | https://ror.org/01e41cf67 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I1343871089, https://openalex.org/I198811213, https://openalex.org/I4210120050 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Los Alamos National Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Irina Sagert |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
| authorships[3].author.id | https://openalex.org/A5069737262 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8413-6682 |
| authorships[3].author.display_name | Liam Stanton |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I51504820 |
| authorships[3].affiliations[0].raw_affiliation_string | San Jose State Univ., CA (United States) |
| authorships[3].institutions[0].id | https://openalex.org/I51504820 |
| authorships[3].institutions[0].ror | https://ror.org/04qyvz380 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I51504820 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | San Jose State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liam Stanton |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | San Jose State Univ., CA (United States) |
| authorships[4].author.id | https://openalex.org/A5087113189 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4365-929X |
| authorships[4].author.display_name | Michael S. Murillo |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I87216513 |
| authorships[4].affiliations[0].raw_affiliation_string | Michigan State Univ., East Lansing, MI (United States) |
| authorships[4].institutions[0].id | https://openalex.org/I87216513 |
| authorships[4].institutions[0].ror | https://ror.org/05hs6h993 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I87216513 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Michigan State University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | M. Murillo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Michigan State Univ., East Lansing, MI (United States) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/2377984 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Learning of Accurate Surrogates for Simulations of Complex Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12072 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9128999710083008 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Algorithms |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:2377984 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/2377984 |
| primary_location.id | doi:10.2172/2377984 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | report |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2172/2377984 |
| publication_date | 2021-11-05 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 15, 75, 91, 138 |
| abstract_inverted_index.We | 36, 94 |
| abstract_inverted_index.an | 38 |
| abstract_inverted_index.at | 14 |
| abstract_inverted_index.be | 145 |
| abstract_inverted_index.by | 43 |
| abstract_inverted_index.in | 27, 68, 81, 107 |
| abstract_inverted_index.is | 119 |
| abstract_inverted_index.it | 53, 73 |
| abstract_inverted_index.of | 23, 30, 61, 109, 141 |
| abstract_inverted_index.or | 33 |
| abstract_inverted_index.to | 6, 128 |
| abstract_inverted_index.all | 56 |
| abstract_inverted_index.and | 72, 78 |
| abstract_inverted_index.are | 3, 66 |
| abstract_inverted_index.can | 144 |
| abstract_inverted_index.few | 152 |
| abstract_inverted_index.for | 10, 137 |
| abstract_inverted_index.has | 47 |
| abstract_inverted_index.the | 20, 28, 62, 69, 116, 126 |
| abstract_inverted_index.two | 48 |
| abstract_inverted_index.data | 71 |
| abstract_inverted_index.even | 114 |
| abstract_inverted_index.from | 148 |
| abstract_inverted_index.over | 50 |
| abstract_inverted_index.that | 46, 55, 99, 133 |
| abstract_inverted_index.when | 86, 115 |
| abstract_inverted_index.below | 90 |
| abstract_inverted_index.cost. | 18 |
| abstract_inverted_index.data. | 35 |
| abstract_inverted_index.dense | 129 |
| abstract_inverted_index.falls | 89 |
| abstract_inverted_index.find, | 95 |
| abstract_inverted_index.local | 57, 112 |
| abstract_inverted_index.model | 63, 143, 153 |
| abstract_inverted_index.state | 142 |
| abstract_inverted_index.terms | 108 |
| abstract_inverted_index.their | 87 |
| abstract_inverted_index.these | 24 |
| abstract_inverted_index.using | 96, 151 |
| abstract_inverted_index.which | 82 |
| abstract_inverted_index.around | 111 |
| abstract_inverted_index.biased | 120 |
| abstract_inverted_index.highly | 134 |
| abstract_inverted_index.matter | 131 |
| abstract_inverted_index.method | 41 |
| abstract_inverted_index.metric | 118 |
| abstract_inverted_index.models | 9 |
| abstract_inverted_index.noisy, | 31 |
| abstract_inverted_index.online | 39 |
| abstract_inverted_index.update | 79 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.complex | 11 |
| abstract_inverted_index.current | 51 |
| abstract_inverted_index.dynamic | 34 |
| abstract_inverted_index.employs | 74 |
| abstract_inverted_index.ensures | 54 |
| abstract_inverted_index.extrema | 58, 113 |
| abstract_inverted_index.methods | 2, 106 |
| abstract_inverted_index.nuclear | 130, 139 |
| abstract_inverted_index.overall | 123 |
| abstract_inverted_index.process | 80 |
| abstract_inverted_index.reduced | 16 |
| abstract_inverted_index.scoring | 117 |
| abstract_inverted_index.sparse, | 32 |
| abstract_inverted_index.surface | 65 |
| abstract_inverted_index.systems | 13 |
| abstract_inverted_index.towards | 121 |
| abstract_inverted_index.undergo | 84 |
| abstract_inverted_index.Finally, | 125 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.accuracy | 110 |
| abstract_inverted_index.accurate | 135 |
| abstract_inverted_index.degrades | 26 |
| abstract_inverted_index.deployed | 5 |
| abstract_inverted_index.equation | 140 |
| abstract_inverted_index.included | 67 |
| abstract_inverted_index.learning | 1, 40 |
| abstract_inverted_index.physical | 12 |
| abstract_inverted_index.presence | 29 |
| abstract_inverted_index.reliably | 146 |
| abstract_inverted_index.response | 64 |
| abstract_inverted_index.sampling | 45, 101, 105 |
| abstract_inverted_index.training | 70 |
| abstract_inverted_index.validity | 92 |
| abstract_inverted_index.accuracy. | 124 |
| abstract_inverted_index.assessing | 122 |
| abstract_inverted_index.benchmark | 97 |
| abstract_inverted_index.construct | 7 |
| abstract_inverted_index.empowered | 42 |
| abstract_inverted_index.expensive | 149 |
| abstract_inverted_index.generally | 102 |
| abstract_inverted_index.introduce | 37 |
| abstract_inverted_index.surrogate | 8 |
| abstract_inverted_index.(including | 59 |
| abstract_inverted_index.advantages | 49 |
| abstract_inverted_index.capability | 22 |
| abstract_inverted_index.continuous | 76 |
| abstract_inverted_index.endpoints) | 60 |
| abstract_inverted_index.functions, | 98 |
| abstract_inverted_index.predictive | 21 |
| abstract_inverted_index.retraining | 85 |
| abstract_inverted_index.surrogates | 25, 83, 136 |
| abstract_inverted_index.threshold. | 93 |
| abstract_inverted_index.validation | 77 |
| abstract_inverted_index.application | 127 |
| abstract_inverted_index.approaches: | 52 |
| abstract_inverted_index.outperforms | 103 |
| abstract_inverted_index.performance | 88 |
| abstract_inverted_index.traditional | 104 |
| abstract_inverted_index.calculations | 150 |
| abstract_inverted_index.demonstrates | 132 |
| abstract_inverted_index.evaluations. | 154 |
| abstract_inverted_index.increasingly | 4 |
| abstract_inverted_index.computational | 17 |
| abstract_inverted_index.auto-generated | 147 |
| abstract_inverted_index.optimizer-driven | 44 |
| abstract_inverted_index.optimizer-directed | 100 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |