Efficient Learning of Object Placement with Intra-Category Transfer Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.03408
Efficient learning from demonstration for long-horizon tasks remains an open challenge in robotics. While significant effort has been directed toward learning trajectories, a recent resurgence of object-centric approaches has demonstrated improved sample efficiency, enabling transferable robotic skills. Such approaches model tasks as a sequence of object poses over time. In this work, we propose a scheme for transferring observed object arrangements to novel object instances by learning these arrangements on canonical class frames. We then employ this scheme to enable a simple yet effective approach for training models from as few as five demonstrations to predict arrangements of a wide range of objects including tableware, cutlery, furniture, and desk spaces. We propose a method for optimizing the learned models to enable efficient learning of tasks such as setting a table or tidying up an office with intra-category transfer, even in the presence of distractors. We present extensive experimental results in simulation and on a real robotic system for table setting which, based on human evaluations, scored 73.3% compared to a human baseline. We make the code and trained models publicly available at https://oplict.cs.uni-freiburg.de.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.03408
- https://arxiv.org/pdf/2411.03408
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404354541
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404354541Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.03408Digital Object Identifier
- Title
-
Efficient Learning of Object Placement with Intra-Category TransferWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-05Full publication date if available
- Authors
-
Adrian Röfer, Russell Buchanan, Max Argus, Sethu Vijayakumar, Abhinav ValadaList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.03408Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.03408Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.03408Direct OA link when available
- Concepts
-
Shot (pellet), Object (grammar), Transfer (computing), Computer science, Artificial intelligence, Transfer of learning, One shot, Engineering, Materials science, Mechanical engineering, Parallel computing, MetallurgyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404354541 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.03408 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.03408 |
| ids.openalex | https://openalex.org/W4404354541 |
| fwci | |
| type | preprint |
| title | Efficient Learning of Object Placement with Intra-Category Transfer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9891999959945679 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9653000235557556 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9611999988555908 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778344882 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7080004215240479 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[0].display_name | Shot (pellet) |
| concepts[1].id | https://openalex.org/C2781238097 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6607887148857117 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[1].display_name | Object (grammar) |
| concepts[2].id | https://openalex.org/C2776175482 |
| concepts[2].level | 2 |
| concepts[2].score | 0.634293794631958 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1195816 |
| concepts[2].display_name | Transfer (computing) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.534162163734436 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4516729712486267 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C150899416 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43357741832733154 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[5].display_name | Transfer of learning |
| concepts[6].id | https://openalex.org/C2992734406 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4193003177642822 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413267 |
| concepts[6].display_name | One shot |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1146862804889679 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C192562407 |
| concepts[8].level | 0 |
| concepts[8].score | 0.07435435056686401 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[8].display_name | Materials science |
| concepts[9].id | https://openalex.org/C78519656 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07070288062095642 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[9].display_name | Mechanical engineering |
| concepts[10].id | https://openalex.org/C173608175 |
| concepts[10].level | 1 |
| concepts[10].score | 0.06419971585273743 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[10].display_name | Parallel computing |
| concepts[11].id | https://openalex.org/C191897082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[11].display_name | Metallurgy |
| keywords[0].id | https://openalex.org/keywords/shot |
| keywords[0].score | 0.7080004215240479 |
| keywords[0].display_name | Shot (pellet) |
| keywords[1].id | https://openalex.org/keywords/object |
| keywords[1].score | 0.6607887148857117 |
| keywords[1].display_name | Object (grammar) |
| keywords[2].id | https://openalex.org/keywords/transfer |
| keywords[2].score | 0.634293794631958 |
| keywords[2].display_name | Transfer (computing) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.534162163734436 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4516729712486267 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[5].score | 0.43357741832733154 |
| keywords[5].display_name | Transfer of learning |
| keywords[6].id | https://openalex.org/keywords/one-shot |
| keywords[6].score | 0.4193003177642822 |
| keywords[6].display_name | One shot |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.1146862804889679 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/materials-science |
| keywords[8].score | 0.07435435056686401 |
| keywords[8].display_name | Materials science |
| keywords[9].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[9].score | 0.07070288062095642 |
| keywords[9].display_name | Mechanical engineering |
| keywords[10].id | https://openalex.org/keywords/parallel-computing |
| keywords[10].score | 0.06419971585273743 |
| keywords[10].display_name | Parallel computing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.03408 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.03408 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.03408 |
| locations[1].id | doi:10.48550/arxiv.2411.03408 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.03408 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5007336076 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6132-0989 |
| authorships[0].author.display_name | Adrian Röfer |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Röfer, Adrian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5065670640 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9172-5856 |
| authorships[1].author.display_name | Russell Buchanan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Buchanan, Russell |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023640000 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1288-7476 |
| authorships[2].author.display_name | Max Argus |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Argus, Max |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5069715982 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0649-7241 |
| authorships[3].author.display_name | Sethu Vijayakumar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vijayakumar, Sethu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5039639553 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4710-3114 |
| authorships[4].author.display_name | Abhinav Valada |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Valada, Abhinav |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.03408 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Learning of Object Placement with Intra-Category Transfer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-03T00:04:00.142953 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9891999959945679 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2497720472, https://openalex.org/W4292659306, https://openalex.org/W3044321615, https://openalex.org/W2806221744, https://openalex.org/W2326937258, https://openalex.org/W394267150, https://openalex.org/W2773965352, https://openalex.org/W4294892107, https://openalex.org/W4404320418, https://openalex.org/W2357748469 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.03408 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.03408 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.03408 |
| primary_location.id | pmh:oai:arXiv.org:2411.03408 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.03408 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.03408 |
| publication_date | 2024-11-05 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 42, 54, 80, 98, 112, 128, 153, 169 |
| abstract_inverted_index.In | 49 |
| abstract_inverted_index.We | 73, 110, 144, 172 |
| abstract_inverted_index.an | 8, 133 |
| abstract_inverted_index.as | 41, 89, 91, 126 |
| abstract_inverted_index.at | 181 |
| abstract_inverted_index.by | 65 |
| abstract_inverted_index.in | 11, 139, 149 |
| abstract_inverted_index.of | 25, 44, 97, 101, 123, 142 |
| abstract_inverted_index.on | 69, 152, 162 |
| abstract_inverted_index.or | 130 |
| abstract_inverted_index.to | 61, 78, 94, 119, 168 |
| abstract_inverted_index.up | 132 |
| abstract_inverted_index.we | 52 |
| abstract_inverted_index.and | 107, 151, 176 |
| abstract_inverted_index.few | 90 |
| abstract_inverted_index.for | 4, 56, 85, 114, 157 |
| abstract_inverted_index.has | 16, 28 |
| abstract_inverted_index.the | 116, 140, 174 |
| abstract_inverted_index.yet | 82 |
| abstract_inverted_index.Such | 37 |
| abstract_inverted_index.been | 17 |
| abstract_inverted_index.code | 175 |
| abstract_inverted_index.desk | 108 |
| abstract_inverted_index.even | 138 |
| abstract_inverted_index.five | 92 |
| abstract_inverted_index.from | 2, 88 |
| abstract_inverted_index.make | 173 |
| abstract_inverted_index.open | 9 |
| abstract_inverted_index.over | 47 |
| abstract_inverted_index.real | 154 |
| abstract_inverted_index.such | 125 |
| abstract_inverted_index.then | 74 |
| abstract_inverted_index.this | 50, 76 |
| abstract_inverted_index.wide | 99 |
| abstract_inverted_index.with | 135 |
| abstract_inverted_index.73.3% | 166 |
| abstract_inverted_index.While | 13 |
| abstract_inverted_index.based | 161 |
| abstract_inverted_index.class | 71 |
| abstract_inverted_index.human | 163, 170 |
| abstract_inverted_index.model | 39 |
| abstract_inverted_index.novel | 62 |
| abstract_inverted_index.poses | 46 |
| abstract_inverted_index.range | 100 |
| abstract_inverted_index.table | 129, 158 |
| abstract_inverted_index.tasks | 6, 40, 124 |
| abstract_inverted_index.these | 67 |
| abstract_inverted_index.time. | 48 |
| abstract_inverted_index.work, | 51 |
| abstract_inverted_index.effort | 15 |
| abstract_inverted_index.employ | 75 |
| abstract_inverted_index.enable | 79, 120 |
| abstract_inverted_index.method | 113 |
| abstract_inverted_index.models | 87, 118, 178 |
| abstract_inverted_index.object | 45, 59, 63 |
| abstract_inverted_index.office | 134 |
| abstract_inverted_index.recent | 23 |
| abstract_inverted_index.sample | 31 |
| abstract_inverted_index.scheme | 55, 77 |
| abstract_inverted_index.scored | 165 |
| abstract_inverted_index.simple | 81 |
| abstract_inverted_index.system | 156 |
| abstract_inverted_index.toward | 19 |
| abstract_inverted_index.which, | 160 |
| abstract_inverted_index.frames. | 72 |
| abstract_inverted_index.learned | 117 |
| abstract_inverted_index.objects | 102 |
| abstract_inverted_index.predict | 95 |
| abstract_inverted_index.present | 145 |
| abstract_inverted_index.propose | 53, 111 |
| abstract_inverted_index.remains | 7 |
| abstract_inverted_index.results | 148 |
| abstract_inverted_index.robotic | 35, 155 |
| abstract_inverted_index.setting | 127, 159 |
| abstract_inverted_index.skills. | 36 |
| abstract_inverted_index.spaces. | 109 |
| abstract_inverted_index.tidying | 131 |
| abstract_inverted_index.trained | 177 |
| abstract_inverted_index.approach | 84 |
| abstract_inverted_index.compared | 167 |
| abstract_inverted_index.cutlery, | 105 |
| abstract_inverted_index.directed | 18 |
| abstract_inverted_index.enabling | 33 |
| abstract_inverted_index.improved | 30 |
| abstract_inverted_index.learning | 1, 20, 66, 122 |
| abstract_inverted_index.observed | 58 |
| abstract_inverted_index.presence | 141 |
| abstract_inverted_index.publicly | 179 |
| abstract_inverted_index.sequence | 43 |
| abstract_inverted_index.training | 86 |
| abstract_inverted_index.Efficient | 0 |
| abstract_inverted_index.available | 180 |
| abstract_inverted_index.baseline. | 171 |
| abstract_inverted_index.canonical | 70 |
| abstract_inverted_index.challenge | 10 |
| abstract_inverted_index.effective | 83 |
| abstract_inverted_index.efficient | 121 |
| abstract_inverted_index.extensive | 146 |
| abstract_inverted_index.including | 103 |
| abstract_inverted_index.instances | 64 |
| abstract_inverted_index.robotics. | 12 |
| abstract_inverted_index.transfer, | 137 |
| abstract_inverted_index.approaches | 27, 38 |
| abstract_inverted_index.furniture, | 106 |
| abstract_inverted_index.optimizing | 115 |
| abstract_inverted_index.resurgence | 24 |
| abstract_inverted_index.simulation | 150 |
| abstract_inverted_index.tableware, | 104 |
| abstract_inverted_index.efficiency, | 32 |
| abstract_inverted_index.significant | 14 |
| abstract_inverted_index.arrangements | 60, 68, 96 |
| abstract_inverted_index.demonstrated | 29 |
| abstract_inverted_index.distractors. | 143 |
| abstract_inverted_index.evaluations, | 164 |
| abstract_inverted_index.experimental | 147 |
| abstract_inverted_index.long-horizon | 5 |
| abstract_inverted_index.transferable | 34 |
| abstract_inverted_index.transferring | 57 |
| abstract_inverted_index.demonstration | 3 |
| abstract_inverted_index.trajectories, | 21 |
| abstract_inverted_index.demonstrations | 93 |
| abstract_inverted_index.intra-category | 136 |
| abstract_inverted_index.object-centric | 26 |
| abstract_inverted_index.https://oplict.cs.uni-freiburg.de. | 182 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |