Efficient Long-context Language Model Training by Core Attention Disaggregation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.18121
We present core attention disaggregation (CAD), a technique that improves long-context large language model training by decoupling the core attention computation, softmax(QK^T)V, from the rest of the model and executing it on a separate pool of devices. In existing systems, core attention is colocated with other layers; at long context lengths, its quadratic compute growth compared to the near-linear growth of other components causes load imbalance and stragglers across data and pipeline parallel groups. CAD is enabled by two observations. First, core attention is stateless: it has no trainable parameters and only minimal transient data, so balancing reduces to scheduling compute-bound tasks. Second, it is composable: modern attention kernels retain high efficiency when processing fused batches of token-level shards with arbitrary lengths. CAD partitions core attention into token-level tasks and dispatches them to dedicated attention servers, which dynamically rebatch tasks to equalize compute without sacrificing kernel efficiency. We implement CAD in a system called DistCA, which uses a ping-pong execution scheme to fully overlap communication with computation and in-place execution on attention servers to reduce memory use. On 512 H200 GPUs and context lengths up to 512k tokens, DistCA improves end-to-end training throughput by up to 1.35x, eliminates data and pipeline parallel stragglers, and achieves near-perfect compute and memory balance.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.18121
- https://arxiv.org/pdf/2510.18121
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416055065
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416055065Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.18121Digital Object Identifier
- Title
-
Efficient Long-context Language Model Training by Core Attention DisaggregationWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-20Full publication date if available
- Authors
-
Yonghao Zhuang, Jiajia Chen, Bo Pang, Yi Gu, Yibo Zhu, Yimin Jiang, Ion Stoica, Eric P. Xing, Hao ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.18121Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.18121Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.18121Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416055065 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.18121 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.18121 |
| ids.openalex | https://openalex.org/W4416055065 |
| fwci | |
| type | preprint |
| title | Efficient Long-context Language Model Training by Core Attention Disaggregation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.18121 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.18121 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.18121 |
| locations[1].id | doi:10.48550/arxiv.2510.18121 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.18121 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5076407338 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yonghao Zhuang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhuang, Yonghao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100400988 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6027-7712 |
| authorships[1].author.display_name | Jiajia Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Junda |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5039012911 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3227-3612 |
| authorships[2].author.display_name | Bo Pang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pang, Bo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5021031407 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1211-2654 |
| authorships[3].author.display_name | Yi Gu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gu, Yi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5028120333 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9113-2660 |
| authorships[4].author.display_name | Yibo Zhu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhu, Yibo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5079353641 |
| authorships[5].author.orcid | https://orcid.org/0009-0001-0049-873X |
| authorships[5].author.display_name | Yimin Jiang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jiang, Yimin |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5041920173 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5373-0088 |
| authorships[6].author.display_name | Ion Stoica |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Stoica, Ion |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5009547049 |
| authorships[7].author.orcid | https://orcid.org/0009-0005-9158-4201 |
| authorships[7].author.display_name | Eric P. Xing |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Xing, Eric |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100397018 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1863-7440 |
| authorships[8].author.display_name | Hao Zhang |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Zhang, Hao |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.18121 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | Efficient Long-context Language Model Training by Core Attention Disaggregation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:46:10.893777 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.18121 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.18121 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.18121 |
| primary_location.id | pmh:oai:arXiv.org:2510.18121 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.18121 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.18121 |
| publication_date | 2025-10-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 32, 151, 157 |
| abstract_inverted_index.In | 37 |
| abstract_inverted_index.On | 177 |
| abstract_inverted_index.We | 0, 147 |
| abstract_inverted_index.at | 47 |
| abstract_inverted_index.by | 15, 77, 193 |
| abstract_inverted_index.in | 150 |
| abstract_inverted_index.is | 42, 75, 83, 104 |
| abstract_inverted_index.it | 30, 85, 103 |
| abstract_inverted_index.no | 87 |
| abstract_inverted_index.of | 25, 35, 60, 116 |
| abstract_inverted_index.on | 31, 170 |
| abstract_inverted_index.so | 95 |
| abstract_inverted_index.to | 56, 98, 132, 140, 161, 173, 185, 195 |
| abstract_inverted_index.up | 184, 194 |
| abstract_inverted_index.512 | 178 |
| abstract_inverted_index.CAD | 74, 122, 149 |
| abstract_inverted_index.and | 28, 66, 70, 90, 129, 167, 181, 199, 203, 207 |
| abstract_inverted_index.has | 86 |
| abstract_inverted_index.its | 51 |
| abstract_inverted_index.the | 17, 23, 26, 57 |
| abstract_inverted_index.two | 78 |
| abstract_inverted_index.512k | 186 |
| abstract_inverted_index.GPUs | 180 |
| abstract_inverted_index.H200 | 179 |
| abstract_inverted_index.core | 2, 18, 40, 81, 124 |
| abstract_inverted_index.data | 69, 198 |
| abstract_inverted_index.from | 22 |
| abstract_inverted_index.high | 110 |
| abstract_inverted_index.into | 126 |
| abstract_inverted_index.load | 64 |
| abstract_inverted_index.long | 48 |
| abstract_inverted_index.only | 91 |
| abstract_inverted_index.pool | 34 |
| abstract_inverted_index.rest | 24 |
| abstract_inverted_index.that | 8 |
| abstract_inverted_index.them | 131 |
| abstract_inverted_index.use. | 176 |
| abstract_inverted_index.uses | 156 |
| abstract_inverted_index.when | 112 |
| abstract_inverted_index.with | 44, 119, 165 |
| abstract_inverted_index.data, | 94 |
| abstract_inverted_index.fully | 162 |
| abstract_inverted_index.fused | 114 |
| abstract_inverted_index.large | 11 |
| abstract_inverted_index.model | 13, 27 |
| abstract_inverted_index.other | 45, 61 |
| abstract_inverted_index.tasks | 128, 139 |
| abstract_inverted_index.which | 136, 155 |
| abstract_inverted_index.(CAD), | 5 |
| abstract_inverted_index.1.35x, | 196 |
| abstract_inverted_index.DistCA | 188 |
| abstract_inverted_index.First, | 80 |
| abstract_inverted_index.across | 68 |
| abstract_inverted_index.called | 153 |
| abstract_inverted_index.causes | 63 |
| abstract_inverted_index.growth | 54, 59 |
| abstract_inverted_index.kernel | 145 |
| abstract_inverted_index.memory | 175, 208 |
| abstract_inverted_index.modern | 106 |
| abstract_inverted_index.reduce | 174 |
| abstract_inverted_index.retain | 109 |
| abstract_inverted_index.scheme | 160 |
| abstract_inverted_index.shards | 118 |
| abstract_inverted_index.system | 152 |
| abstract_inverted_index.tasks. | 101 |
| abstract_inverted_index.DistCA, | 154 |
| abstract_inverted_index.Second, | 102 |
| abstract_inverted_index.batches | 115 |
| abstract_inverted_index.compute | 53, 142, 206 |
| abstract_inverted_index.context | 49, 182 |
| abstract_inverted_index.enabled | 76 |
| abstract_inverted_index.groups. | 73 |
| abstract_inverted_index.kernels | 108 |
| abstract_inverted_index.layers; | 46 |
| abstract_inverted_index.lengths | 183 |
| abstract_inverted_index.minimal | 92 |
| abstract_inverted_index.overlap | 163 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.rebatch | 138 |
| abstract_inverted_index.reduces | 97 |
| abstract_inverted_index.servers | 172 |
| abstract_inverted_index.tokens, | 187 |
| abstract_inverted_index.without | 143 |
| abstract_inverted_index.achieves | 204 |
| abstract_inverted_index.balance. | 209 |
| abstract_inverted_index.compared | 55 |
| abstract_inverted_index.devices. | 36 |
| abstract_inverted_index.equalize | 141 |
| abstract_inverted_index.existing | 38 |
| abstract_inverted_index.improves | 9, 189 |
| abstract_inverted_index.in-place | 168 |
| abstract_inverted_index.language | 12 |
| abstract_inverted_index.lengths, | 50 |
| abstract_inverted_index.lengths. | 121 |
| abstract_inverted_index.parallel | 72, 201 |
| abstract_inverted_index.pipeline | 71, 200 |
| abstract_inverted_index.separate | 33 |
| abstract_inverted_index.servers, | 135 |
| abstract_inverted_index.systems, | 39 |
| abstract_inverted_index.training | 14, 191 |
| abstract_inverted_index.arbitrary | 120 |
| abstract_inverted_index.attention | 3, 19, 41, 82, 107, 125, 134, 171 |
| abstract_inverted_index.balancing | 96 |
| abstract_inverted_index.colocated | 43 |
| abstract_inverted_index.dedicated | 133 |
| abstract_inverted_index.executing | 29 |
| abstract_inverted_index.execution | 159, 169 |
| abstract_inverted_index.imbalance | 65 |
| abstract_inverted_index.implement | 148 |
| abstract_inverted_index.ping-pong | 158 |
| abstract_inverted_index.quadratic | 52 |
| abstract_inverted_index.technique | 7 |
| abstract_inverted_index.trainable | 88 |
| abstract_inverted_index.transient | 93 |
| abstract_inverted_index.components | 62 |
| abstract_inverted_index.decoupling | 16 |
| abstract_inverted_index.dispatches | 130 |
| abstract_inverted_index.efficiency | 111 |
| abstract_inverted_index.eliminates | 197 |
| abstract_inverted_index.end-to-end | 190 |
| abstract_inverted_index.parameters | 89 |
| abstract_inverted_index.partitions | 123 |
| abstract_inverted_index.processing | 113 |
| abstract_inverted_index.scheduling | 99 |
| abstract_inverted_index.stateless: | 84 |
| abstract_inverted_index.stragglers | 67 |
| abstract_inverted_index.throughput | 192 |
| abstract_inverted_index.composable: | 105 |
| abstract_inverted_index.computation | 166 |
| abstract_inverted_index.dynamically | 137 |
| abstract_inverted_index.efficiency. | 146 |
| abstract_inverted_index.near-linear | 58 |
| abstract_inverted_index.sacrificing | 144 |
| abstract_inverted_index.stragglers, | 202 |
| abstract_inverted_index.token-level | 117, 127 |
| abstract_inverted_index.computation, | 20 |
| abstract_inverted_index.long-context | 10 |
| abstract_inverted_index.near-perfect | 205 |
| abstract_inverted_index.communication | 164 |
| abstract_inverted_index.compute-bound | 100 |
| abstract_inverted_index.observations. | 79 |
| abstract_inverted_index.disaggregation | 4 |
| abstract_inverted_index.softmax(QK^T)V, | 21 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |