Efficient Measurement-Driven Eigenenergy Estimation with Classical Shadows Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.13691
Quantum algorithms exploiting real-time evolution under a target Hamiltonian have demonstrated remarkable efficiency in extracting key spectral information. However, the broader potential of these methods, particularly beyond ground state calculations, is underexplored. In this work, we introduce the framework of multi-observable dynamic mode decomposition (MODMD), which combines the observable dynamic mode decomposition, a measurement-driven eigensolver tailored for near-term implementation, with classical shadow tomography. MODMD leverages random scrambling in the classical shadow technique to construct, with exponentially reduced resource requirements, a signal subspace that encodes rich spectral information. Notably, we replace typical Hadamard-test circuits with a protocol designed to predict low-rank observables, thus marking a new application of classical shadow tomography for predicting many low-rank observables. We establish theoretical guarantees on the spectral approximation from MODMD, taking into account distinct sources of error. In the ideal case, we prove that the spectral error scales as $\exp(- ΔE t_{\rm max})$, where $ΔE$ is the Hamiltonian spectral gap and $t_{\rm max}$ is the maximal simulation time. This analysis provides a rigorous justification of the rapid convergence observed across simulations. To demonstrate the utility of our framework, we consider its application to fundamental tasks, such as determining the low-lying, i.e. ground or excited, energies of representative many-body systems. Our work paves the path for efficient designs of measurement-driven algorithms on near-term and early fault-tolerant quantum devices.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.13691
- https://arxiv.org/pdf/2409.13691
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403780073
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403780073Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.13691Digital Object Identifier
- Title
-
Efficient Measurement-Driven Eigenenergy Estimation with Classical ShadowsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-20Full publication date if available
- Authors
-
Yizhi Shen, Alex Buzali, Hong-Ye Hu, Katherine Klymko, Daan Camps, Susanne F. Yelin, Roel Van BeeumenList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.13691Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.13691Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.13691Direct OA link when available
- Concepts
-
Physics, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403780073 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.13691 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.13691 |
| ids.openalex | https://openalex.org/W4403780073 |
| fwci | |
| type | preprint |
| title | Efficient Measurement-Driven Eigenenergy Estimation with Classical Shadows |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9363999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9254999756813049 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C121332964 |
| concepts[0].level | 0 |
| concepts[0].score | 0.38815227150917053 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[0].display_name | Physics |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3726944923400879 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/physics |
| keywords[0].score | 0.38815227150917053 |
| keywords[0].display_name | Physics |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.3726944923400879 |
| keywords[1].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.13691 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.13691 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.13691 |
| locations[1].id | doi:10.48550/arxiv.2409.13691 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.13691 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5084185952 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4160-5482 |
| authorships[0].author.display_name | Yizhi Shen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shen, Yizhi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114412354 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Alex Buzali |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Buzali, Alex |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070474717 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5841-831X |
| authorships[2].author.display_name | Hong-Ye Hu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hu, Hong-Ye |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5034924651 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4158-5776 |
| authorships[3].author.display_name | Katherine Klymko |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Klymko, Katherine |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5015674933 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0236-4353 |
| authorships[4].author.display_name | Daan Camps |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Camps, Daan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5114412355 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Susanne F. Yelin |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yelin, Susanne F. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5088134474 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2276-1153 |
| authorships[6].author.display_name | Roel Van Beeumen |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Van Beeumen, Roel |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.13691 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-26T00:00:00 |
| display_name | Efficient Measurement-Driven Eigenenergy Estimation with Classical Shadows |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9363999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2935759653, https://openalex.org/W3105167352, https://openalex.org/W54078636, https://openalex.org/W2954470139, https://openalex.org/W1501425562, https://openalex.org/W2902782467, https://openalex.org/W3084825885 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.13691 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.13691 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.13691 |
| primary_location.id | pmh:oai:arXiv.org:2409.13691 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.13691 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.13691 |
| publication_date | 2024-09-20 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 52, 79, 94, 103, 166 |
| abstract_inverted_index.In | 32, 132 |
| abstract_inverted_index.To | 176 |
| abstract_inverted_index.We | 115 |
| abstract_inverted_index.as | 143, 191 |
| abstract_inverted_index.in | 13, 67 |
| abstract_inverted_index.is | 30, 150, 158 |
| abstract_inverted_index.of | 22, 39, 106, 130, 169, 180, 200, 212 |
| abstract_inverted_index.on | 119, 215 |
| abstract_inverted_index.or | 197 |
| abstract_inverted_index.to | 72, 97, 187 |
| abstract_inverted_index.we | 35, 88, 136, 183 |
| abstract_inverted_index.Our | 204 |
| abstract_inverted_index.and | 155, 217 |
| abstract_inverted_index.for | 56, 110, 209 |
| abstract_inverted_index.gap | 154 |
| abstract_inverted_index.its | 185 |
| abstract_inverted_index.key | 15 |
| abstract_inverted_index.new | 104 |
| abstract_inverted_index.our | 181 |
| abstract_inverted_index.the | 19, 37, 47, 68, 120, 133, 139, 151, 159, 170, 178, 193, 207 |
| abstract_inverted_index.ΔE | 145 |
| abstract_inverted_index.This | 163 |
| abstract_inverted_index.from | 123 |
| abstract_inverted_index.have | 9 |
| abstract_inverted_index.i.e. | 195 |
| abstract_inverted_index.into | 126 |
| abstract_inverted_index.many | 112 |
| abstract_inverted_index.mode | 42, 50 |
| abstract_inverted_index.path | 208 |
| abstract_inverted_index.rich | 84 |
| abstract_inverted_index.such | 190 |
| abstract_inverted_index.that | 82, 138 |
| abstract_inverted_index.this | 33 |
| abstract_inverted_index.thus | 101 |
| abstract_inverted_index.with | 59, 74, 93 |
| abstract_inverted_index.work | 205 |
| abstract_inverted_index.$ΔE$ | 149 |
| abstract_inverted_index.MODMD | 63 |
| abstract_inverted_index.case, | 135 |
| abstract_inverted_index.early | 218 |
| abstract_inverted_index.error | 141 |
| abstract_inverted_index.ideal | 134 |
| abstract_inverted_index.max}$ | 157 |
| abstract_inverted_index.paves | 206 |
| abstract_inverted_index.prove | 137 |
| abstract_inverted_index.rapid | 171 |
| abstract_inverted_index.state | 28 |
| abstract_inverted_index.these | 23 |
| abstract_inverted_index.time. | 162 |
| abstract_inverted_index.under | 5 |
| abstract_inverted_index.where | 148 |
| abstract_inverted_index.which | 45 |
| abstract_inverted_index.work, | 34 |
| abstract_inverted_index.MODMD, | 124 |
| abstract_inverted_index.across | 174 |
| abstract_inverted_index.beyond | 26 |
| abstract_inverted_index.error. | 131 |
| abstract_inverted_index.ground | 27, 196 |
| abstract_inverted_index.random | 65 |
| abstract_inverted_index.scales | 142 |
| abstract_inverted_index.shadow | 61, 70, 108 |
| abstract_inverted_index.signal | 80 |
| abstract_inverted_index.t_{\rm | 146 |
| abstract_inverted_index.taking | 125 |
| abstract_inverted_index.target | 7 |
| abstract_inverted_index.tasks, | 189 |
| abstract_inverted_index.$\exp(- | 144 |
| abstract_inverted_index.$t_{\rm | 156 |
| abstract_inverted_index.Quantum | 0 |
| abstract_inverted_index.account | 127 |
| abstract_inverted_index.broader | 20 |
| abstract_inverted_index.designs | 211 |
| abstract_inverted_index.dynamic | 41, 49 |
| abstract_inverted_index.encodes | 83 |
| abstract_inverted_index.marking | 102 |
| abstract_inverted_index.maximal | 160 |
| abstract_inverted_index.max})$, | 147 |
| abstract_inverted_index.predict | 98 |
| abstract_inverted_index.quantum | 220 |
| abstract_inverted_index.reduced | 76 |
| abstract_inverted_index.replace | 89 |
| abstract_inverted_index.sources | 129 |
| abstract_inverted_index.typical | 90 |
| abstract_inverted_index.utility | 179 |
| abstract_inverted_index.(MODMD), | 44 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.Notably, | 87 |
| abstract_inverted_index.analysis | 164 |
| abstract_inverted_index.circuits | 92 |
| abstract_inverted_index.combines | 46 |
| abstract_inverted_index.consider | 184 |
| abstract_inverted_index.designed | 96 |
| abstract_inverted_index.devices. | 221 |
| abstract_inverted_index.distinct | 128 |
| abstract_inverted_index.energies | 199 |
| abstract_inverted_index.excited, | 198 |
| abstract_inverted_index.low-rank | 99, 113 |
| abstract_inverted_index.methods, | 24 |
| abstract_inverted_index.observed | 173 |
| abstract_inverted_index.protocol | 95 |
| abstract_inverted_index.provides | 165 |
| abstract_inverted_index.resource | 77 |
| abstract_inverted_index.rigorous | 167 |
| abstract_inverted_index.spectral | 16, 85, 121, 140, 153 |
| abstract_inverted_index.subspace | 81 |
| abstract_inverted_index.systems. | 203 |
| abstract_inverted_index.tailored | 55 |
| abstract_inverted_index.classical | 60, 69, 107 |
| abstract_inverted_index.efficient | 210 |
| abstract_inverted_index.establish | 116 |
| abstract_inverted_index.evolution | 4 |
| abstract_inverted_index.framework | 38 |
| abstract_inverted_index.introduce | 36 |
| abstract_inverted_index.leverages | 64 |
| abstract_inverted_index.many-body | 202 |
| abstract_inverted_index.near-term | 57, 216 |
| abstract_inverted_index.potential | 21 |
| abstract_inverted_index.real-time | 3 |
| abstract_inverted_index.technique | 71 |
| abstract_inverted_index.algorithms | 1, 214 |
| abstract_inverted_index.construct, | 73 |
| abstract_inverted_index.efficiency | 12 |
| abstract_inverted_index.exploiting | 2 |
| abstract_inverted_index.extracting | 14 |
| abstract_inverted_index.framework, | 182 |
| abstract_inverted_index.guarantees | 118 |
| abstract_inverted_index.low-lying, | 194 |
| abstract_inverted_index.observable | 48 |
| abstract_inverted_index.predicting | 111 |
| abstract_inverted_index.remarkable | 11 |
| abstract_inverted_index.scrambling | 66 |
| abstract_inverted_index.simulation | 161 |
| abstract_inverted_index.tomography | 109 |
| abstract_inverted_index.Hamiltonian | 8, 152 |
| abstract_inverted_index.application | 105, 186 |
| abstract_inverted_index.convergence | 172 |
| abstract_inverted_index.demonstrate | 177 |
| abstract_inverted_index.determining | 192 |
| abstract_inverted_index.eigensolver | 54 |
| abstract_inverted_index.fundamental | 188 |
| abstract_inverted_index.theoretical | 117 |
| abstract_inverted_index.tomography. | 62 |
| abstract_inverted_index.demonstrated | 10 |
| abstract_inverted_index.information. | 17, 86 |
| abstract_inverted_index.observables, | 100 |
| abstract_inverted_index.observables. | 114 |
| abstract_inverted_index.particularly | 25 |
| abstract_inverted_index.simulations. | 175 |
| abstract_inverted_index.Hadamard-test | 91 |
| abstract_inverted_index.approximation | 122 |
| abstract_inverted_index.calculations, | 29 |
| abstract_inverted_index.decomposition | 43 |
| abstract_inverted_index.exponentially | 75 |
| abstract_inverted_index.justification | 168 |
| abstract_inverted_index.requirements, | 78 |
| abstract_inverted_index.decomposition, | 51 |
| abstract_inverted_index.fault-tolerant | 219 |
| abstract_inverted_index.representative | 201 |
| abstract_inverted_index.underexplored. | 31 |
| abstract_inverted_index.implementation, | 58 |
| abstract_inverted_index.multi-observable | 40 |
| abstract_inverted_index.measurement-driven | 53, 213 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |