Efficient Medicinal Image Transmission and Resolution Enhancement via GAN Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.12833
While X-ray imaging is indispensable in medical diagnostics, it inherently carries with it those noises and limitations on resolution that mask the details necessary for diagnosis. B/W X-ray images require a careful balance between noise suppression and high-detail preservation to ensure clarity in soft-tissue structures and bone edges. While traditional methods, such as CNNs and early super-resolution models like ESRGAN, have enhanced image resolution, they often perform poorly regarding high-frequency detail preservation and noise control for B/W imaging. We are going to present one efficient approach that improves the quality of an image with the optimization of network transmission in the following paper. The pre-processing of X-ray images into low-resolution files by Real-ESRGAN, a version of ESRGAN elucidated and improved, helps reduce the server load and transmission bandwidth. Lower-resolution images are upscaled at the receiving end using Real-ESRGAN, fine-tuned for real-world image degradation. The model integrates Residual-in-Residual Dense Blocks with perceptual and adversarial loss functions for high-quality upscaled images with low noise. We further fine-tune Real-ESRGAN by adapting it to the specific B/W noise and contrast characteristics. This suppresses noise artifacts without compromising detail. The comparative evaluation conducted shows that our approach achieves superior noise reduction and detail clarity compared to state-of-the-art CNN-based and ESRGAN models, apart from reducing network bandwidth requirements. These benefits are confirmed both by quantitative metrics, including Peak Signal-to-Noise Ratio and Structural Similarity Index, and by qualitative assessments, which indicate the potential of Real-ESRGAN for diagnostic-quality X-ray imaging and for efficient medical data transmission.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.12833
- https://arxiv.org/pdf/2411.12833
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404648610
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404648610Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.12833Digital Object Identifier
- Title
-
Efficient Medicinal Image Transmission and Resolution Enhancement via GANWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-19Full publication date if available
- Authors
-
Rishabh Kumar Sharma, M. M. Sharma, Pushkar Sharma, Jeetashree AparjeetaList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.12833Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.12833Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.12833Direct OA link when available
- Concepts
-
Transmission (telecommunications), Resolution (logic), Image (mathematics), Optoelectronics, Materials science, Computer science, Business, Nanotechnology, Computer vision, Artificial intelligence, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404648610 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.12833 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.12833 |
| ids.openalex | https://openalex.org/W4404648610 |
| fwci | |
| type | preprint |
| title | Efficient Medicinal Image Transmission and Resolution Enhancement via GAN |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9564999938011169 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9409000277519226 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C761482 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5948523879051208 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q118093 |
| concepts[0].display_name | Transmission (telecommunications) |
| concepts[1].id | https://openalex.org/C138268822 |
| concepts[1].level | 2 |
| concepts[1].score | 0.53218013048172 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[1].display_name | Resolution (logic) |
| concepts[2].id | https://openalex.org/C115961682 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49292945861816406 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[2].display_name | Image (mathematics) |
| concepts[3].id | https://openalex.org/C49040817 |
| concepts[3].level | 1 |
| concepts[3].score | 0.46710100769996643 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q193091 |
| concepts[3].display_name | Optoelectronics |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.43910929560661316 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.34725451469421387 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C144133560 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3466203510761261 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[6].display_name | Business |
| concepts[7].id | https://openalex.org/C171250308 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3268251121044159 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[7].display_name | Nanotechnology |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.29378047585487366 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.24925407767295837 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.17354559898376465 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/transmission |
| keywords[0].score | 0.5948523879051208 |
| keywords[0].display_name | Transmission (telecommunications) |
| keywords[1].id | https://openalex.org/keywords/resolution |
| keywords[1].score | 0.53218013048172 |
| keywords[1].display_name | Resolution (logic) |
| keywords[2].id | https://openalex.org/keywords/image |
| keywords[2].score | 0.49292945861816406 |
| keywords[2].display_name | Image (mathematics) |
| keywords[3].id | https://openalex.org/keywords/optoelectronics |
| keywords[3].score | 0.46710100769996643 |
| keywords[3].display_name | Optoelectronics |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.43910929560661316 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.34725451469421387 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/business |
| keywords[6].score | 0.3466203510761261 |
| keywords[6].display_name | Business |
| keywords[7].id | https://openalex.org/keywords/nanotechnology |
| keywords[7].score | 0.3268251121044159 |
| keywords[7].display_name | Nanotechnology |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.29378047585487366 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.24925407767295837 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/telecommunications |
| keywords[10].score | 0.17354559898376465 |
| keywords[10].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.12833 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.12833 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.12833 |
| locations[1].id | doi:10.48550/arxiv.2411.12833 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.12833 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5108948589 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Rishabh Kumar Sharma |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sharma, Rishabh Kumar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018123078 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9212-438X |
| authorships[1].author.display_name | M. M. Sharma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sharma, Mukund |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5041282587 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6861-0508 |
| authorships[2].author.display_name | Pushkar Sharma |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sharma, Pushkar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114761085 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jeetashree Aparjeeta |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Aparjeeta, Jeetashree |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.12833 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Medicinal Image Transmission and Resolution Enhancement via GAN |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9564999938011169 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W1517180214, https://openalex.org/W2082780921, https://openalex.org/W2025517136, https://openalex.org/W2028664052, https://openalex.org/W634414395, https://openalex.org/W2186016250, https://openalex.org/W1584839083, https://openalex.org/W4255305805, https://openalex.org/W1601094116, https://openalex.org/W2056165575 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.12833 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.12833 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.12833 |
| primary_location.id | pmh:oai:arXiv.org:2411.12833 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.12833 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.12833 |
| publication_date | 2024-11-19 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 113 |
| abstract_inverted_index.We | 78, 162 |
| abstract_inverted_index.an | 91 |
| abstract_inverted_index.as | 52 |
| abstract_inverted_index.at | 132 |
| abstract_inverted_index.by | 111, 166, 217, 229 |
| abstract_inverted_index.in | 5, 42, 99 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.it | 8, 12, 168 |
| abstract_inverted_index.of | 90, 96, 105, 115, 236 |
| abstract_inverted_index.on | 17 |
| abstract_inverted_index.to | 39, 81, 169, 200 |
| abstract_inverted_index.B/W | 26, 76, 172 |
| abstract_inverted_index.The | 103, 143, 184 |
| abstract_inverted_index.and | 15, 36, 45, 54, 72, 118, 125, 151, 174, 196, 203, 224, 228, 242 |
| abstract_inverted_index.are | 79, 130, 214 |
| abstract_inverted_index.end | 135 |
| abstract_inverted_index.for | 24, 75, 139, 155, 238, 243 |
| abstract_inverted_index.low | 160 |
| abstract_inverted_index.one | 83 |
| abstract_inverted_index.our | 190 |
| abstract_inverted_index.the | 21, 88, 94, 100, 122, 133, 170, 234 |
| abstract_inverted_index.CNNs | 53 |
| abstract_inverted_index.Peak | 221 |
| abstract_inverted_index.This | 177 |
| abstract_inverted_index.bone | 46 |
| abstract_inverted_index.both | 216 |
| abstract_inverted_index.data | 246 |
| abstract_inverted_index.from | 207 |
| abstract_inverted_index.have | 60 |
| abstract_inverted_index.into | 108 |
| abstract_inverted_index.like | 58 |
| abstract_inverted_index.load | 124 |
| abstract_inverted_index.loss | 153 |
| abstract_inverted_index.mask | 20 |
| abstract_inverted_index.such | 51 |
| abstract_inverted_index.that | 19, 86, 189 |
| abstract_inverted_index.they | 64 |
| abstract_inverted_index.with | 11, 93, 149, 159 |
| abstract_inverted_index.Dense | 147 |
| abstract_inverted_index.Ratio | 223 |
| abstract_inverted_index.These | 212 |
| abstract_inverted_index.While | 0, 48 |
| abstract_inverted_index.X-ray | 1, 27, 106, 240 |
| abstract_inverted_index.apart | 206 |
| abstract_inverted_index.early | 55 |
| abstract_inverted_index.files | 110 |
| abstract_inverted_index.going | 80 |
| abstract_inverted_index.helps | 120 |
| abstract_inverted_index.image | 62, 92, 141 |
| abstract_inverted_index.model | 144 |
| abstract_inverted_index.noise | 34, 73, 173, 179, 194 |
| abstract_inverted_index.often | 65 |
| abstract_inverted_index.shows | 188 |
| abstract_inverted_index.those | 13 |
| abstract_inverted_index.using | 136 |
| abstract_inverted_index.which | 232 |
| abstract_inverted_index.Blocks | 148 |
| abstract_inverted_index.ESRGAN | 116, 204 |
| abstract_inverted_index.Index, | 227 |
| abstract_inverted_index.detail | 70, 197 |
| abstract_inverted_index.edges. | 47 |
| abstract_inverted_index.ensure | 40 |
| abstract_inverted_index.images | 28, 107, 129, 158 |
| abstract_inverted_index.models | 57 |
| abstract_inverted_index.noise. | 161 |
| abstract_inverted_index.noises | 14 |
| abstract_inverted_index.paper. | 102 |
| abstract_inverted_index.poorly | 67 |
| abstract_inverted_index.reduce | 121 |
| abstract_inverted_index.server | 123 |
| abstract_inverted_index.ESRGAN, | 59 |
| abstract_inverted_index.balance | 32 |
| abstract_inverted_index.between | 33 |
| abstract_inverted_index.careful | 31 |
| abstract_inverted_index.carries | 10 |
| abstract_inverted_index.clarity | 41, 198 |
| abstract_inverted_index.control | 74 |
| abstract_inverted_index.detail. | 183 |
| abstract_inverted_index.details | 22 |
| abstract_inverted_index.further | 163 |
| abstract_inverted_index.imaging | 2, 241 |
| abstract_inverted_index.medical | 6, 245 |
| abstract_inverted_index.models, | 205 |
| abstract_inverted_index.network | 97, 209 |
| abstract_inverted_index.perform | 66 |
| abstract_inverted_index.present | 82 |
| abstract_inverted_index.quality | 89 |
| abstract_inverted_index.require | 29 |
| abstract_inverted_index.version | 114 |
| abstract_inverted_index.without | 181 |
| abstract_inverted_index.achieves | 192 |
| abstract_inverted_index.adapting | 167 |
| abstract_inverted_index.approach | 85, 191 |
| abstract_inverted_index.benefits | 213 |
| abstract_inverted_index.compared | 199 |
| abstract_inverted_index.contrast | 175 |
| abstract_inverted_index.enhanced | 61 |
| abstract_inverted_index.imaging. | 77 |
| abstract_inverted_index.improves | 87 |
| abstract_inverted_index.indicate | 233 |
| abstract_inverted_index.methods, | 50 |
| abstract_inverted_index.metrics, | 219 |
| abstract_inverted_index.reducing | 208 |
| abstract_inverted_index.specific | 171 |
| abstract_inverted_index.superior | 193 |
| abstract_inverted_index.upscaled | 131, 157 |
| abstract_inverted_index.CNN-based | 202 |
| abstract_inverted_index.artifacts | 180 |
| abstract_inverted_index.bandwidth | 210 |
| abstract_inverted_index.conducted | 187 |
| abstract_inverted_index.confirmed | 215 |
| abstract_inverted_index.efficient | 84, 244 |
| abstract_inverted_index.fine-tune | 164 |
| abstract_inverted_index.following | 101 |
| abstract_inverted_index.functions | 154 |
| abstract_inverted_index.improved, | 119 |
| abstract_inverted_index.including | 220 |
| abstract_inverted_index.necessary | 23 |
| abstract_inverted_index.potential | 235 |
| abstract_inverted_index.receiving | 134 |
| abstract_inverted_index.reduction | 195 |
| abstract_inverted_index.regarding | 68 |
| abstract_inverted_index.Similarity | 226 |
| abstract_inverted_index.Structural | 225 |
| abstract_inverted_index.bandwidth. | 127 |
| abstract_inverted_index.diagnosis. | 25 |
| abstract_inverted_index.elucidated | 117 |
| abstract_inverted_index.evaluation | 186 |
| abstract_inverted_index.fine-tuned | 138 |
| abstract_inverted_index.inherently | 9 |
| abstract_inverted_index.integrates | 145 |
| abstract_inverted_index.perceptual | 150 |
| abstract_inverted_index.real-world | 140 |
| abstract_inverted_index.resolution | 18 |
| abstract_inverted_index.structures | 44 |
| abstract_inverted_index.suppresses | 178 |
| abstract_inverted_index.Real-ESRGAN | 165, 237 |
| abstract_inverted_index.adversarial | 152 |
| abstract_inverted_index.comparative | 185 |
| abstract_inverted_index.high-detail | 37 |
| abstract_inverted_index.limitations | 16 |
| abstract_inverted_index.qualitative | 230 |
| abstract_inverted_index.resolution, | 63 |
| abstract_inverted_index.soft-tissue | 43 |
| abstract_inverted_index.suppression | 35 |
| abstract_inverted_index.traditional | 49 |
| abstract_inverted_index.Real-ESRGAN, | 112, 137 |
| abstract_inverted_index.assessments, | 231 |
| abstract_inverted_index.compromising | 182 |
| abstract_inverted_index.degradation. | 142 |
| abstract_inverted_index.diagnostics, | 7 |
| abstract_inverted_index.high-quality | 156 |
| abstract_inverted_index.optimization | 95 |
| abstract_inverted_index.preservation | 38, 71 |
| abstract_inverted_index.quantitative | 218 |
| abstract_inverted_index.transmission | 98, 126 |
| abstract_inverted_index.indispensable | 4 |
| abstract_inverted_index.requirements. | 211 |
| abstract_inverted_index.transmission. | 247 |
| abstract_inverted_index.high-frequency | 69 |
| abstract_inverted_index.low-resolution | 109 |
| abstract_inverted_index.pre-processing | 104 |
| abstract_inverted_index.Signal-to-Noise | 222 |
| abstract_inverted_index.Lower-resolution | 128 |
| abstract_inverted_index.characteristics. | 176 |
| abstract_inverted_index.state-of-the-art | 201 |
| abstract_inverted_index.super-resolution | 56 |
| abstract_inverted_index.diagnostic-quality | 239 |
| abstract_inverted_index.Residual-in-Residual | 146 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |