Efficient Model Compression for Hierarchical Federated Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.17522
Federated learning (FL), as an emerging collaborative learning paradigm, has garnered significant attention due to its capacity to preserve privacy within distributed learning systems. In these systems, clients collaboratively train a unified neural network model using their local datasets and share model parameters rather than raw data, enhancing privacy. Predominantly, FL systems are designed for mobile and edge computing environments where training typically occurs over wireless networks. Consequently, as model sizes increase, the conventional FL frameworks increasingly consume substantial communication resources. To address this challenge and improve communication efficiency, this paper introduces a novel hierarchical FL framework that integrates the benefits of clustered FL and model compression. We present an adaptive clustering algorithm that identifies a core client and dynamically organizes clients into clusters. Furthermore, to enhance transmission efficiency, each core client implements a local aggregation with compression (LC aggregation) algorithm after collecting compressed models from other clients within the same cluster. Simulation results affirm that our proposed algorithms not only maintain comparable predictive accuracy but also significantly reduce energy consumption relative to existing FL mechanisms.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.17522
- https://arxiv.org/pdf/2405.17522
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399151259
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399151259Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.17522Digital Object Identifier
- Title
-
Efficient Model Compression for Hierarchical Federated LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-27Full publication date if available
- Authors
-
Xi Zhu, Songcan Yu, Junbo Wang, Qinglin YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.17522Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.17522Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.17522Direct OA link when available
- Concepts
-
Computer science, Compression (physics), Artificial intelligence, Composite material, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399151259 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.17522 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.17522 |
| ids.openalex | https://openalex.org/W4399151259 |
| fwci | |
| type | preprint |
| title | Efficient Model Compression for Hierarchical Federated Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9900000095367432 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T10203 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9609000086784363 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Recommender Systems and Techniques |
| topics[2].id | https://openalex.org/T11273 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9462000131607056 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Graph Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6311397552490234 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C180016635 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4637857675552368 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2712821 |
| concepts[1].display_name | Compression (physics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.36368417739868164 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C159985019 |
| concepts[3].level | 1 |
| concepts[3].score | 0.0 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[3].display_name | Composite material |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6311397552490234 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/compression |
| keywords[1].score | 0.4637857675552368 |
| keywords[1].display_name | Compression (physics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.36368417739868164 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.17522 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.17522 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.17522 |
| locations[1].id | doi:10.48550/arxiv.2405.17522 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.17522 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100594585 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-0222-066X |
| authorships[0].author.display_name | Xi Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhu, Xi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5013663621 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2991-3703 |
| authorships[1].author.display_name | Songcan Yu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu, Songcan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5109218676 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6032-1274 |
| authorships[2].author.display_name | Junbo Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Junbo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5071062179 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7263-8914 |
| authorships[3].author.display_name | Qinglin Yang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yang, Qinglin |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.17522 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Model Compression for Hierarchical Federated Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9900000095367432 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4395014643 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.17522 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.17522 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.17522 |
| primary_location.id | pmh:oai:arXiv.org:2405.17522 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.17522 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.17522 |
| publication_date | 2024-05-27 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 92, 115, 133 |
| abstract_inverted_index.FL | 50, 74, 95, 103, 174 |
| abstract_inverted_index.In | 24 |
| abstract_inverted_index.To | 81 |
| abstract_inverted_index.We | 107 |
| abstract_inverted_index.an | 4, 109 |
| abstract_inverted_index.as | 3, 68 |
| abstract_inverted_index.of | 101 |
| abstract_inverted_index.to | 14, 17, 125, 172 |
| abstract_inverted_index.(LC | 138 |
| abstract_inverted_index.and | 39, 56, 85, 104, 118 |
| abstract_inverted_index.are | 52 |
| abstract_inverted_index.but | 165 |
| abstract_inverted_index.due | 13 |
| abstract_inverted_index.for | 54 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.its | 15 |
| abstract_inverted_index.not | 159 |
| abstract_inverted_index.our | 156 |
| abstract_inverted_index.raw | 45 |
| abstract_inverted_index.the | 72, 99, 149 |
| abstract_inverted_index.also | 166 |
| abstract_inverted_index.core | 116, 130 |
| abstract_inverted_index.each | 129 |
| abstract_inverted_index.edge | 57 |
| abstract_inverted_index.from | 145 |
| abstract_inverted_index.into | 122 |
| abstract_inverted_index.only | 160 |
| abstract_inverted_index.over | 64 |
| abstract_inverted_index.same | 150 |
| abstract_inverted_index.than | 44 |
| abstract_inverted_index.that | 97, 113, 155 |
| abstract_inverted_index.this | 83, 89 |
| abstract_inverted_index.with | 136 |
| abstract_inverted_index.(FL), | 2 |
| abstract_inverted_index.after | 141 |
| abstract_inverted_index.data, | 46 |
| abstract_inverted_index.local | 37, 134 |
| abstract_inverted_index.model | 34, 41, 69, 105 |
| abstract_inverted_index.novel | 93 |
| abstract_inverted_index.other | 146 |
| abstract_inverted_index.paper | 90 |
| abstract_inverted_index.share | 40 |
| abstract_inverted_index.sizes | 70 |
| abstract_inverted_index.their | 36 |
| abstract_inverted_index.these | 25 |
| abstract_inverted_index.train | 29 |
| abstract_inverted_index.using | 35 |
| abstract_inverted_index.where | 60 |
| abstract_inverted_index.affirm | 154 |
| abstract_inverted_index.client | 117, 131 |
| abstract_inverted_index.energy | 169 |
| abstract_inverted_index.mobile | 55 |
| abstract_inverted_index.models | 144 |
| abstract_inverted_index.neural | 32 |
| abstract_inverted_index.occurs | 63 |
| abstract_inverted_index.rather | 43 |
| abstract_inverted_index.reduce | 168 |
| abstract_inverted_index.within | 20, 148 |
| abstract_inverted_index.address | 82 |
| abstract_inverted_index.clients | 27, 121, 147 |
| abstract_inverted_index.consume | 77 |
| abstract_inverted_index.enhance | 126 |
| abstract_inverted_index.improve | 86 |
| abstract_inverted_index.network | 33 |
| abstract_inverted_index.present | 108 |
| abstract_inverted_index.privacy | 19 |
| abstract_inverted_index.results | 153 |
| abstract_inverted_index.systems | 51 |
| abstract_inverted_index.unified | 31 |
| abstract_inverted_index.accuracy | 164 |
| abstract_inverted_index.adaptive | 110 |
| abstract_inverted_index.benefits | 100 |
| abstract_inverted_index.capacity | 16 |
| abstract_inverted_index.cluster. | 151 |
| abstract_inverted_index.datasets | 38 |
| abstract_inverted_index.designed | 53 |
| abstract_inverted_index.emerging | 5 |
| abstract_inverted_index.existing | 173 |
| abstract_inverted_index.garnered | 10 |
| abstract_inverted_index.learning | 1, 7, 22 |
| abstract_inverted_index.maintain | 161 |
| abstract_inverted_index.preserve | 18 |
| abstract_inverted_index.privacy. | 48 |
| abstract_inverted_index.proposed | 157 |
| abstract_inverted_index.relative | 171 |
| abstract_inverted_index.systems, | 26 |
| abstract_inverted_index.systems. | 23 |
| abstract_inverted_index.training | 61 |
| abstract_inverted_index.wireless | 65 |
| abstract_inverted_index.Federated | 0 |
| abstract_inverted_index.algorithm | 112, 140 |
| abstract_inverted_index.attention | 12 |
| abstract_inverted_index.challenge | 84 |
| abstract_inverted_index.clustered | 102 |
| abstract_inverted_index.clusters. | 123 |
| abstract_inverted_index.computing | 58 |
| abstract_inverted_index.enhancing | 47 |
| abstract_inverted_index.framework | 96 |
| abstract_inverted_index.increase, | 71 |
| abstract_inverted_index.networks. | 66 |
| abstract_inverted_index.organizes | 120 |
| abstract_inverted_index.paradigm, | 8 |
| abstract_inverted_index.typically | 62 |
| abstract_inverted_index.Simulation | 152 |
| abstract_inverted_index.algorithms | 158 |
| abstract_inverted_index.clustering | 111 |
| abstract_inverted_index.collecting | 142 |
| abstract_inverted_index.comparable | 162 |
| abstract_inverted_index.compressed | 143 |
| abstract_inverted_index.frameworks | 75 |
| abstract_inverted_index.identifies | 114 |
| abstract_inverted_index.implements | 132 |
| abstract_inverted_index.integrates | 98 |
| abstract_inverted_index.introduces | 91 |
| abstract_inverted_index.parameters | 42 |
| abstract_inverted_index.predictive | 163 |
| abstract_inverted_index.resources. | 80 |
| abstract_inverted_index.aggregation | 135 |
| abstract_inverted_index.compression | 137 |
| abstract_inverted_index.consumption | 170 |
| abstract_inverted_index.distributed | 21 |
| abstract_inverted_index.dynamically | 119 |
| abstract_inverted_index.efficiency, | 88, 128 |
| abstract_inverted_index.mechanisms. | 175 |
| abstract_inverted_index.significant | 11 |
| abstract_inverted_index.substantial | 78 |
| abstract_inverted_index.Furthermore, | 124 |
| abstract_inverted_index.aggregation) | 139 |
| abstract_inverted_index.compression. | 106 |
| abstract_inverted_index.conventional | 73 |
| abstract_inverted_index.environments | 59 |
| abstract_inverted_index.hierarchical | 94 |
| abstract_inverted_index.increasingly | 76 |
| abstract_inverted_index.transmission | 127 |
| abstract_inverted_index.Consequently, | 67 |
| abstract_inverted_index.collaborative | 6 |
| abstract_inverted_index.communication | 79, 87 |
| abstract_inverted_index.significantly | 167 |
| abstract_inverted_index.Predominantly, | 49 |
| abstract_inverted_index.collaboratively | 28 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |