Efficient Multi-Sample Approximate Computing for Scalable Analysis of Massive Distributed Datasets on Resource-Constrained Clusters Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1609/aaaiss.v6i1.36030
The prolific explosion of data in today's digital sphere by modern AI applications has created new challenges and opportunities for business industries. This has necessitated the development of scalable methods for analyzing massive datasets stored in distributed systems. However, resource-constrained clusters often struggle to process such datasets due to memory constraints and the computational overhead of distributed AI algorithms. This paper proposes efficient multi-sample approximate computing (EMSAC), a novel approach designed to enable scalable analysis of massive distributed datasets on small clusters with limited memory. EMSAC leverages multiple small random samples, processed in parallel using sequential algorithms, to approximate the analysis of the entire dataset. The approach has been implemented in Spark using the LOGO computing framework to address three key challenges: (1) efficient generation of multiple small random samples from a massive distributed dataset; (2) conversion of these data block samples to a partial RSP data model and parallel execution of sequential algorithms on the partial RSP data model to mine frequent itemsets; and (3) aggregation of each data block result to produce the approximate set of frequent itemsets of D. To guarantee the quality of random data block samples, we theoretically provide a bound on the estimated number of data blocks to be selected from the distributed data file. Empirical evaluations on synthetic and real-world datasets demonstrate that EMSAC outperforms traditional distributed and sampling-based approaches in terms of scalability, accuracy, and computational efficiency. The findings have shown that EMSAC is suitable for processing massive distributed data and generating accurate approximate frequent itemsets with constrained clusters.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaaiss.v6i1.36030
- https://ojs.aaai.org/index.php/AAAI-SS/article/download/36030/38185
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412840651
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412840651Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaaiss.v6i1.36030Digital Object Identifier
- Title
-
Efficient Multi-Sample Approximate Computing for Scalable Analysis of Massive Distributed Datasets on Resource-Constrained ClustersWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-01Full publication date if available
- Authors
-
Alladoumbaye Ngueilbaye, Joshua Zhexue Huang, Yongda Cai, Xudong SunList of authors in order
- Landing page
-
https://doi.org/10.1609/aaaiss.v6i1.36030Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI-SS/article/download/36030/38185Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI-SS/article/download/36030/38185Direct OA link when available
- Concepts
-
Computer science, Scalability, SPARK (programming language), Overhead (engineering), Block (permutation group theory), Distributed computing, Data mining, Distributed memory, Distributed database, Distributed algorithm, Sample (material), Resource (disambiguation), Distributed Computing Environment, Parallel computing, Database, Shared memory, Chemistry, Geometry, Chromatography, Computer network, Operating system, Programming language, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412840651 |
|---|---|
| doi | https://doi.org/10.1609/aaaiss.v6i1.36030 |
| ids.doi | https://doi.org/10.1609/aaaiss.v6i1.36030 |
| ids.openalex | https://openalex.org/W4412840651 |
| fwci | 0.0 |
| type | article |
| title | Efficient Multi-Sample Approximate Computing for Scalable Analysis of Massive Distributed Datasets on Resource-Constrained Clusters |
| biblio.issue | 1 |
| biblio.volume | 6 |
| biblio.last_page | 66 |
| biblio.first_page | 66 |
| topics[0].id | https://openalex.org/T11612 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Stochastic Gradient Optimization Techniques |
| topics[1].id | https://openalex.org/T10764 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Privacy-Preserving Technologies in Data |
| topics[2].id | https://openalex.org/T10720 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9858999848365784 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Complexity and Algorithms in Graphs |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8430792689323425 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C48044578 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8234586119651794 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[1].display_name | Scalability |
| concepts[2].id | https://openalex.org/C2781215313 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6185338497161865 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3493345 |
| concepts[2].display_name | SPARK (programming language) |
| concepts[3].id | https://openalex.org/C2779960059 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6089156866073608 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7113681 |
| concepts[3].display_name | Overhead (engineering) |
| concepts[4].id | https://openalex.org/C2777210771 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5921051502227783 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[4].display_name | Block (permutation group theory) |
| concepts[5].id | https://openalex.org/C120314980 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5311692357063293 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[5].display_name | Distributed computing |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48087814450263977 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C91481028 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4675178825855255 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1054686 |
| concepts[7].display_name | Distributed memory |
| concepts[8].id | https://openalex.org/C70061542 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43562647700309753 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q989016 |
| concepts[8].display_name | Distributed database |
| concepts[9].id | https://openalex.org/C130120984 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43554043769836426 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2835898 |
| concepts[9].display_name | Distributed algorithm |
| concepts[10].id | https://openalex.org/C198531522 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42391467094421387 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[10].display_name | Sample (material) |
| concepts[11].id | https://openalex.org/C206345919 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4203086495399475 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[11].display_name | Resource (disambiguation) |
| concepts[12].id | https://openalex.org/C3739613 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4111369550228119 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q679003 |
| concepts[12].display_name | Distributed Computing Environment |
| concepts[13].id | https://openalex.org/C173608175 |
| concepts[13].level | 1 |
| concepts[13].score | 0.37900638580322266 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[13].display_name | Parallel computing |
| concepts[14].id | https://openalex.org/C77088390 |
| concepts[14].level | 1 |
| concepts[14].score | 0.21730247139930725 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[14].display_name | Database |
| concepts[15].id | https://openalex.org/C133875982 |
| concepts[15].level | 2 |
| concepts[15].score | 0.15984460711479187 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q764810 |
| concepts[15].display_name | Shared memory |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C43617362 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[18].display_name | Chromatography |
| concepts[19].id | https://openalex.org/C31258907 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[19].display_name | Computer network |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| concepts[22].id | https://openalex.org/C33923547 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[22].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8430792689323425 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/scalability |
| keywords[1].score | 0.8234586119651794 |
| keywords[1].display_name | Scalability |
| keywords[2].id | https://openalex.org/keywords/spark |
| keywords[2].score | 0.6185338497161865 |
| keywords[2].display_name | SPARK (programming language) |
| keywords[3].id | https://openalex.org/keywords/overhead |
| keywords[3].score | 0.6089156866073608 |
| keywords[3].display_name | Overhead (engineering) |
| keywords[4].id | https://openalex.org/keywords/block |
| keywords[4].score | 0.5921051502227783 |
| keywords[4].display_name | Block (permutation group theory) |
| keywords[5].id | https://openalex.org/keywords/distributed-computing |
| keywords[5].score | 0.5311692357063293 |
| keywords[5].display_name | Distributed computing |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.48087814450263977 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/distributed-memory |
| keywords[7].score | 0.4675178825855255 |
| keywords[7].display_name | Distributed memory |
| keywords[8].id | https://openalex.org/keywords/distributed-database |
| keywords[8].score | 0.43562647700309753 |
| keywords[8].display_name | Distributed database |
| keywords[9].id | https://openalex.org/keywords/distributed-algorithm |
| keywords[9].score | 0.43554043769836426 |
| keywords[9].display_name | Distributed algorithm |
| keywords[10].id | https://openalex.org/keywords/sample |
| keywords[10].score | 0.42391467094421387 |
| keywords[10].display_name | Sample (material) |
| keywords[11].id | https://openalex.org/keywords/resource |
| keywords[11].score | 0.4203086495399475 |
| keywords[11].display_name | Resource (disambiguation) |
| keywords[12].id | https://openalex.org/keywords/distributed-computing-environment |
| keywords[12].score | 0.4111369550228119 |
| keywords[12].display_name | Distributed Computing Environment |
| keywords[13].id | https://openalex.org/keywords/parallel-computing |
| keywords[13].score | 0.37900638580322266 |
| keywords[13].display_name | Parallel computing |
| keywords[14].id | https://openalex.org/keywords/database |
| keywords[14].score | 0.21730247139930725 |
| keywords[14].display_name | Database |
| keywords[15].id | https://openalex.org/keywords/shared-memory |
| keywords[15].score | 0.15984460711479187 |
| keywords[15].display_name | Shared memory |
| language | en |
| locations[0].id | doi:10.1609/aaaiss.v6i1.36030 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4389157828 |
| locations[0].source.issn | 2994-4317 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2994-4317 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Symposium Series |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI-SS/article/download/36030/38185 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Symposium Series |
| locations[0].landing_page_url | https://doi.org/10.1609/aaaiss.v6i1.36030 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5035666851 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5853-9354 |
| authorships[0].author.display_name | Alladoumbaye Ngueilbaye |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I180726961, https://openalex.org/I4210099586 |
| authorships[0].affiliations[0].raw_affiliation_string | National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, China Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, 518060, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210099586 |
| authorships[0].institutions[0].ror | https://ror.org/00z1gwf89 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210099586 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shenzhen Research Institute of Big Data |
| authorships[0].institutions[1].id | https://openalex.org/I180726961 |
| authorships[0].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shenzhen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alladoumbaye Ngueilbaye |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, China Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, 518060, China |
| authorships[1].author.id | https://openalex.org/A5003347359 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6797-2571 |
| authorships[1].author.display_name | Joshua Zhexue Huang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I180726961, https://openalex.org/I4210099586 |
| authorships[1].affiliations[0].raw_affiliation_string | National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, China Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, 518060, China Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen, 518107, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210099586 |
| authorships[1].institutions[0].ror | https://ror.org/00z1gwf89 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210099586 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen Research Institute of Big Data |
| authorships[1].institutions[1].id | https://openalex.org/I180726961 |
| authorships[1].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shenzhen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Joshua Zhexue Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, China Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, 518060, China Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen, 518107, China |
| authorships[2].author.id | https://openalex.org/A5087905293 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3321-879X |
| authorships[2].author.display_name | Yongda Cai |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I180726961, https://openalex.org/I4210099586 |
| authorships[2].affiliations[0].raw_affiliation_string | National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, China Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, 518060, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210099586 |
| authorships[2].institutions[0].ror | https://ror.org/00z1gwf89 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210099586 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenzhen Research Institute of Big Data |
| authorships[2].institutions[1].id | https://openalex.org/I180726961 |
| authorships[2].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Shenzhen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yongda Cai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, China Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, 518060, China |
| authorships[3].author.id | https://openalex.org/A5031783134 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-2171-0081 |
| authorships[3].author.display_name | Xudong Sun |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Management, Shenzhen University, China |
| authorships[3].institutions[0].id | https://openalex.org/I180726961 |
| authorships[3].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shenzhen University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xudong Sun |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Management, Shenzhen University, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI-SS/article/download/36030/38185 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Multi-Sample Approximate Computing for Scalable Analysis of Massive Distributed Datasets on Resource-Constrained Clusters |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11612 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Stochastic Gradient Optimization Techniques |
| related_works | https://openalex.org/W3009866696, https://openalex.org/W127900883, https://openalex.org/W17303578, https://openalex.org/W997248972, https://openalex.org/W3154587653, https://openalex.org/W2368240274, https://openalex.org/W2539081058, https://openalex.org/W2013919567, https://openalex.org/W2509957587, https://openalex.org/W2008246492 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaaiss.v6i1.36030 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4389157828 |
| best_oa_location.source.issn | 2994-4317 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2994-4317 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Symposium Series |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI-SS/article/download/36030/38185 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Symposium Series |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaaiss.v6i1.36030 |
| primary_location.id | doi:10.1609/aaaiss.v6i1.36030 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4389157828 |
| primary_location.source.issn | 2994-4317 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2994-4317 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Symposium Series |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI-SS/article/download/36030/38185 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Symposium Series |
| primary_location.landing_page_url | https://doi.org/10.1609/aaaiss.v6i1.36030 |
| publication_date | 2025-08-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 67, 131, 143, 194 |
| abstract_inverted_index.AI | 11, 57 |
| abstract_inverted_index.D. | 181 |
| abstract_inverted_index.To | 182 |
| abstract_inverted_index.be | 204 |
| abstract_inverted_index.by | 9 |
| abstract_inverted_index.in | 5, 35, 92, 110, 227 |
| abstract_inverted_index.is | 241 |
| abstract_inverted_index.of | 3, 27, 55, 75, 101, 125, 137, 151, 167, 177, 180, 186, 200, 229 |
| abstract_inverted_index.on | 79, 154, 196, 213 |
| abstract_inverted_index.to | 43, 48, 71, 97, 117, 142, 160, 172, 203 |
| abstract_inverted_index.we | 191 |
| abstract_inverted_index.(1) | 122 |
| abstract_inverted_index.(2) | 135 |
| abstract_inverted_index.(3) | 165 |
| abstract_inverted_index.RSP | 145, 157 |
| abstract_inverted_index.The | 0, 105, 235 |
| abstract_inverted_index.and | 17, 51, 148, 164, 215, 224, 232, 248 |
| abstract_inverted_index.due | 47 |
| abstract_inverted_index.for | 19, 30, 243 |
| abstract_inverted_index.has | 13, 23, 107 |
| abstract_inverted_index.key | 120 |
| abstract_inverted_index.new | 15 |
| abstract_inverted_index.set | 176 |
| abstract_inverted_index.the | 25, 52, 99, 102, 113, 155, 174, 184, 197, 207 |
| abstract_inverted_index.LOGO | 114 |
| abstract_inverted_index.This | 22, 59 |
| abstract_inverted_index.been | 108 |
| abstract_inverted_index.data | 4, 139, 146, 158, 169, 188, 201, 209, 247 |
| abstract_inverted_index.each | 168 |
| abstract_inverted_index.from | 130, 206 |
| abstract_inverted_index.have | 237 |
| abstract_inverted_index.mine | 161 |
| abstract_inverted_index.such | 45 |
| abstract_inverted_index.that | 219, 239 |
| abstract_inverted_index.with | 82, 254 |
| abstract_inverted_index.EMSAC | 85, 220, 240 |
| abstract_inverted_index.Spark | 111 |
| abstract_inverted_index.block | 140, 170, 189 |
| abstract_inverted_index.bound | 195 |
| abstract_inverted_index.file. | 210 |
| abstract_inverted_index.model | 147, 159 |
| abstract_inverted_index.novel | 68 |
| abstract_inverted_index.often | 41 |
| abstract_inverted_index.paper | 60 |
| abstract_inverted_index.shown | 238 |
| abstract_inverted_index.small | 80, 88, 127 |
| abstract_inverted_index.terms | 228 |
| abstract_inverted_index.these | 138 |
| abstract_inverted_index.three | 119 |
| abstract_inverted_index.using | 94, 112 |
| abstract_inverted_index.blocks | 202 |
| abstract_inverted_index.enable | 72 |
| abstract_inverted_index.entire | 103 |
| abstract_inverted_index.memory | 49 |
| abstract_inverted_index.modern | 10 |
| abstract_inverted_index.number | 199 |
| abstract_inverted_index.random | 89, 128, 187 |
| abstract_inverted_index.result | 171 |
| abstract_inverted_index.sphere | 8 |
| abstract_inverted_index.stored | 34 |
| abstract_inverted_index.address | 118 |
| abstract_inverted_index.created | 14 |
| abstract_inverted_index.digital | 7 |
| abstract_inverted_index.limited | 83 |
| abstract_inverted_index.massive | 32, 76, 132, 245 |
| abstract_inverted_index.memory. | 84 |
| abstract_inverted_index.methods | 29 |
| abstract_inverted_index.partial | 144, 156 |
| abstract_inverted_index.process | 44 |
| abstract_inverted_index.produce | 173 |
| abstract_inverted_index.provide | 193 |
| abstract_inverted_index.quality | 185 |
| abstract_inverted_index.samples | 129, 141 |
| abstract_inverted_index.today's | 6 |
| abstract_inverted_index.(EMSAC), | 66 |
| abstract_inverted_index.However, | 38 |
| abstract_inverted_index.accurate | 250 |
| abstract_inverted_index.analysis | 74, 100 |
| abstract_inverted_index.approach | 69, 106 |
| abstract_inverted_index.business | 20 |
| abstract_inverted_index.clusters | 40, 81 |
| abstract_inverted_index.dataset. | 104 |
| abstract_inverted_index.dataset; | 134 |
| abstract_inverted_index.datasets | 33, 46, 78, 217 |
| abstract_inverted_index.designed | 70 |
| abstract_inverted_index.findings | 236 |
| abstract_inverted_index.frequent | 162, 178, 252 |
| abstract_inverted_index.itemsets | 179, 253 |
| abstract_inverted_index.multiple | 87, 126 |
| abstract_inverted_index.overhead | 54 |
| abstract_inverted_index.parallel | 93, 149 |
| abstract_inverted_index.prolific | 1 |
| abstract_inverted_index.proposes | 61 |
| abstract_inverted_index.samples, | 90, 190 |
| abstract_inverted_index.scalable | 28, 73 |
| abstract_inverted_index.selected | 205 |
| abstract_inverted_index.struggle | 42 |
| abstract_inverted_index.suitable | 242 |
| abstract_inverted_index.systems. | 37 |
| abstract_inverted_index.Empirical | 211 |
| abstract_inverted_index.accuracy, | 231 |
| abstract_inverted_index.analyzing | 31 |
| abstract_inverted_index.clusters. | 256 |
| abstract_inverted_index.computing | 65, 115 |
| abstract_inverted_index.efficient | 62, 123 |
| abstract_inverted_index.estimated | 198 |
| abstract_inverted_index.execution | 150 |
| abstract_inverted_index.explosion | 2 |
| abstract_inverted_index.framework | 116 |
| abstract_inverted_index.guarantee | 183 |
| abstract_inverted_index.itemsets; | 163 |
| abstract_inverted_index.leverages | 86 |
| abstract_inverted_index.processed | 91 |
| abstract_inverted_index.synthetic | 214 |
| abstract_inverted_index.algorithms | 153 |
| abstract_inverted_index.approaches | 226 |
| abstract_inverted_index.challenges | 16 |
| abstract_inverted_index.conversion | 136 |
| abstract_inverted_index.generating | 249 |
| abstract_inverted_index.generation | 124 |
| abstract_inverted_index.processing | 244 |
| abstract_inverted_index.real-world | 216 |
| abstract_inverted_index.sequential | 95, 152 |
| abstract_inverted_index.aggregation | 166 |
| abstract_inverted_index.algorithms, | 96 |
| abstract_inverted_index.algorithms. | 58 |
| abstract_inverted_index.approximate | 64, 98, 175, 251 |
| abstract_inverted_index.challenges: | 121 |
| abstract_inverted_index.constrained | 255 |
| abstract_inverted_index.constraints | 50 |
| abstract_inverted_index.demonstrate | 218 |
| abstract_inverted_index.development | 26 |
| abstract_inverted_index.distributed | 36, 56, 77, 133, 208, 223, 246 |
| abstract_inverted_index.efficiency. | 234 |
| abstract_inverted_index.evaluations | 212 |
| abstract_inverted_index.implemented | 109 |
| abstract_inverted_index.industries. | 21 |
| abstract_inverted_index.outperforms | 221 |
| abstract_inverted_index.traditional | 222 |
| abstract_inverted_index.applications | 12 |
| abstract_inverted_index.multi-sample | 63 |
| abstract_inverted_index.necessitated | 24 |
| abstract_inverted_index.scalability, | 230 |
| abstract_inverted_index.computational | 53, 233 |
| abstract_inverted_index.opportunities | 18 |
| abstract_inverted_index.theoretically | 192 |
| abstract_inverted_index.sampling-based | 225 |
| abstract_inverted_index.resource-constrained | 39 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.13982805 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |