Efficient Multi Subject Visual Reconstruction from fMRI Using Aligned Representations Article Swipe
Christos Zangos
,
Danish Ebadulla
,
Thomas C. Sprague
,
Ambuj K. Singh
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.01670
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.01670
This work introduces a novel approach to fMRI-based visual image reconstruction using a subject-agnostic common representation space. We show that the brain signals of the subjects can be aligned in this common space during training to form a semantically aligned common brain. This is leveraged to demonstrate that aligning subject-specific lightweight modules to a reference subject is significantly more efficient than traditional end-to-end training methods. Our approach excels in low-data scenarios. We evaluate our methods on different datasets, demonstrating that the common space is subject and dataset-agnostic.
Related Topics
Concepts
No concepts available.
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.01670
- https://arxiv.org/pdf/2505.01670
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415027758
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415027758Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.01670Digital Object Identifier
- Title
-
Efficient Multi Subject Visual Reconstruction from fMRI Using Aligned RepresentationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-03Full publication date if available
- Authors
-
Christos Zangos, Danish Ebadulla, Thomas C. Sprague, Ambuj K. SinghList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.01670Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.01670Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.01670Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415027758 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.01670 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.01670 |
| ids.openalex | https://openalex.org/W4415027758 |
| fwci | |
| type | preprint |
| title | Efficient Multi Subject Visual Reconstruction from fMRI Using Aligned Representations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9794999957084656 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T10531 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9634000062942505 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Vision and Imaging |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9613000154495239 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.01670 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.01670 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.01670 |
| locations[1].id | doi:10.48550/arxiv.2505.01670 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.01670 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5119935247 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Christos Zangos |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zangos, Christos |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114655678 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Danish Ebadulla |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ebadulla, Danish |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5019313135 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9530-2463 |
| authorships[2].author.display_name | Thomas C. Sprague |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sprague, Thomas Christopher |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5036639779 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1997-7140 |
| authorships[3].author.display_name | Ambuj K. Singh |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Singh, Ambuj |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.01670 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Multi Subject Visual Reconstruction from fMRI Using Aligned Representations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9794999957084656 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.01670 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.01670 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.01670 |
| primary_location.id | pmh:oai:arXiv.org:2505.01670 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.01670 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.01670 |
| publication_date | 2025-05-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 12, 37, 53 |
| abstract_inverted_index.We | 17, 71 |
| abstract_inverted_index.be | 27 |
| abstract_inverted_index.in | 29, 68 |
| abstract_inverted_index.is | 43, 56, 83 |
| abstract_inverted_index.of | 23 |
| abstract_inverted_index.on | 75 |
| abstract_inverted_index.to | 6, 35, 45, 52 |
| abstract_inverted_index.Our | 65 |
| abstract_inverted_index.and | 85 |
| abstract_inverted_index.can | 26 |
| abstract_inverted_index.our | 73 |
| abstract_inverted_index.the | 20, 24, 80 |
| abstract_inverted_index.This | 0, 42 |
| abstract_inverted_index.form | 36 |
| abstract_inverted_index.more | 58 |
| abstract_inverted_index.show | 18 |
| abstract_inverted_index.than | 60 |
| abstract_inverted_index.that | 19, 47, 79 |
| abstract_inverted_index.this | 30 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.brain | 21 |
| abstract_inverted_index.image | 9 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.space | 32, 82 |
| abstract_inverted_index.using | 11 |
| abstract_inverted_index.brain. | 41 |
| abstract_inverted_index.common | 14, 31, 40, 81 |
| abstract_inverted_index.during | 33 |
| abstract_inverted_index.excels | 67 |
| abstract_inverted_index.space. | 16 |
| abstract_inverted_index.visual | 8 |
| abstract_inverted_index.aligned | 28, 39 |
| abstract_inverted_index.methods | 74 |
| abstract_inverted_index.modules | 51 |
| abstract_inverted_index.signals | 22 |
| abstract_inverted_index.subject | 55, 84 |
| abstract_inverted_index.aligning | 48 |
| abstract_inverted_index.approach | 5, 66 |
| abstract_inverted_index.evaluate | 72 |
| abstract_inverted_index.low-data | 69 |
| abstract_inverted_index.methods. | 64 |
| abstract_inverted_index.subjects | 25 |
| abstract_inverted_index.training | 34, 63 |
| abstract_inverted_index.datasets, | 77 |
| abstract_inverted_index.different | 76 |
| abstract_inverted_index.efficient | 59 |
| abstract_inverted_index.leveraged | 44 |
| abstract_inverted_index.reference | 54 |
| abstract_inverted_index.end-to-end | 62 |
| abstract_inverted_index.fMRI-based | 7 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.scenarios. | 70 |
| abstract_inverted_index.demonstrate | 46 |
| abstract_inverted_index.lightweight | 50 |
| abstract_inverted_index.traditional | 61 |
| abstract_inverted_index.semantically | 38 |
| abstract_inverted_index.demonstrating | 78 |
| abstract_inverted_index.significantly | 57 |
| abstract_inverted_index.reconstruction | 10 |
| abstract_inverted_index.representation | 15 |
| abstract_inverted_index.subject-agnostic | 13 |
| abstract_inverted_index.subject-specific | 49 |
| abstract_inverted_index.dataset-agnostic. | 86 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |