Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.16975
We present two neural network approaches that approximate the solutions of static and dynamic $\unicode{x1D450}\unicode{x1D45C}\unicode{x1D45B}\unicode{x1D451}\unicode{x1D456}\unicode{x1D461}\unicode{x1D456}\unicode{x1D45C}\unicode{x1D45B}\unicode{x1D44E}\unicode{x1D459}\unicode{x0020}\unicode{x1D45C}\unicode{x1D45D}\unicode{x1D461}\unicode{x1D456}\unicode{x1D45A}\unicode{x1D44E}\unicode{x1D459}\unicode{x0020}\unicode{x1D461}\unicode{x1D45F}\unicode{x1D44E}\unicode{x1D45B}\unicode{x1D460}\unicode{x1D45D}\unicode{x1D45C}\unicode{x1D45F}\unicode{x1D461}$ (COT) problems. Both approaches enable conditional sampling and conditional density estimation, which are core tasks in Bayesian inference$\unicode{x2013}$particularly in the simulation-based ($\unicode{x201C}$likelihood-free$\unicode{x201D}$) setting. Our methods represent the target conditional distribution as a transformation of a tractable reference distribution. Obtaining such a transformation, chosen here to be an approximation of the COT map, is computationally challenging even in moderate dimensions. To improve scalability, our numerical algorithms use neural networks to parameterize candidate maps and further exploit the structure of the COT problem. Our static approach approximates the map as the gradient of a partially input-convex neural network. It uses a novel numerical implementation to increase computational efficiency compared to state-of-the-art alternatives. Our dynamic approach approximates the conditional optimal transport via the flow map of a regularized neural ODE; compared to the static approach, it is slower to train but offers more modeling choices and can lead to faster sampling. We demonstrate both algorithms numerically, comparing them with competing state-of-the-art approaches, using benchmark datasets and simulation-based Bayesian inverse problems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.16975
- https://arxiv.org/pdf/2310.16975
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387994916
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387994916Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.16975Digital Object Identifier
- Title
-
Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian InferenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-25Full publication date if available
- Authors
-
Zheyu Oliver Wang, Ricardo Baptista, Youssef Marzouk, Lars Ruthotto, Deepanshu VermaList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.16975Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.16975Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.16975Direct OA link when available
- Concepts
-
Computer science, Leverage (statistics), Artificial neural network, Inference, Posterior probability, Bayesian inference, Conditional probability distribution, Mathematical optimization, Bayesian probability, Algorithm, Artificial intelligence, Mathematics, EconometricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387994916 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.16975 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.16975 |
| ids.openalex | https://openalex.org/W4387994916 |
| fwci | |
| type | preprint |
| title | Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9927999973297119 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9717000126838684 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T12056 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9674000144004822 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Markov Chains and Monte Carlo Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.62422776222229 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C153083717 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5272178649902344 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[1].display_name | Leverage (statistics) |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5203484892845154 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C2776214188 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5175729990005493 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[3].display_name | Inference |
| concepts[4].id | https://openalex.org/C57830394 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4735875725746155 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q278079 |
| concepts[4].display_name | Posterior probability |
| concepts[5].id | https://openalex.org/C160234255 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4233975112438202 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[5].display_name | Bayesian inference |
| concepts[6].id | https://openalex.org/C43555835 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41632241010665894 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2300258 |
| concepts[6].display_name | Conditional probability distribution |
| concepts[7].id | https://openalex.org/C126255220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3983479142189026 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[7].display_name | Mathematical optimization |
| concepts[8].id | https://openalex.org/C107673813 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3970944881439209 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[8].display_name | Bayesian probability |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39150863885879517 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3535482883453369 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.24220862984657288 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C149782125 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08516088128089905 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[12].display_name | Econometrics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.62422776222229 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/leverage |
| keywords[1].score | 0.5272178649902344 |
| keywords[1].display_name | Leverage (statistics) |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5203484892845154 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/inference |
| keywords[3].score | 0.5175729990005493 |
| keywords[3].display_name | Inference |
| keywords[4].id | https://openalex.org/keywords/posterior-probability |
| keywords[4].score | 0.4735875725746155 |
| keywords[4].display_name | Posterior probability |
| keywords[5].id | https://openalex.org/keywords/bayesian-inference |
| keywords[5].score | 0.4233975112438202 |
| keywords[5].display_name | Bayesian inference |
| keywords[6].id | https://openalex.org/keywords/conditional-probability-distribution |
| keywords[6].score | 0.41632241010665894 |
| keywords[6].display_name | Conditional probability distribution |
| keywords[7].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[7].score | 0.3983479142189026 |
| keywords[7].display_name | Mathematical optimization |
| keywords[8].id | https://openalex.org/keywords/bayesian-probability |
| keywords[8].score | 0.3970944881439209 |
| keywords[8].display_name | Bayesian probability |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.39150863885879517 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3535482883453369 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.24220862984657288 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/econometrics |
| keywords[12].score | 0.08516088128089905 |
| keywords[12].display_name | Econometrics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.16975 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.16975 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.16975 |
| locations[1].id | doi:10.48550/arxiv.2310.16975 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.16975 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5104384506 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-0447-5299 |
| authorships[0].author.display_name | Zheyu Oliver Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Zheyu Oliver |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037381503 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ricardo Baptista |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Baptista, Ricardo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5071702167 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8242-3290 |
| authorships[2].author.display_name | Youssef Marzouk |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Marzouk, Youssef |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076591073 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0803-3299 |
| authorships[3].author.display_name | Lars Ruthotto |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ruthotto, Lars |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5055719783 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9125-2200 |
| authorships[4].author.display_name | Deepanshu Verma |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Verma, Deepanshu |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.16975 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9927999973297119 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W2032094637, https://openalex.org/W2040227828, https://openalex.org/W2060045818, https://openalex.org/W4226115828, https://openalex.org/W2131935101, https://openalex.org/W2407375987, https://openalex.org/W856257623, https://openalex.org/W2505726097, https://openalex.org/W2010643158, https://openalex.org/W3049691116 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.16975 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.16975 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.16975 |
| primary_location.id | pmh:oai:arXiv.org:2310.16975 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.16975 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.16975 |
| publication_date | 2023-10-25 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 46, 49, 55, 106, 113, 138 |
| abstract_inverted_index.It | 111 |
| abstract_inverted_index.To | 74 |
| abstract_inverted_index.We | 0, 163 |
| abstract_inverted_index.an | 61 |
| abstract_inverted_index.as | 45, 102 |
| abstract_inverted_index.be | 60 |
| abstract_inverted_index.in | 30, 33, 71 |
| abstract_inverted_index.is | 67, 148 |
| abstract_inverted_index.it | 147 |
| abstract_inverted_index.of | 10, 48, 63, 92, 105, 137 |
| abstract_inverted_index.to | 59, 83, 117, 122, 143, 150, 160 |
| abstract_inverted_index.COT | 65, 94 |
| abstract_inverted_index.Our | 38, 96, 125 |
| abstract_inverted_index.and | 12, 22, 87, 157, 177 |
| abstract_inverted_index.are | 27 |
| abstract_inverted_index.but | 152 |
| abstract_inverted_index.can | 158 |
| abstract_inverted_index.map | 101, 136 |
| abstract_inverted_index.our | 77 |
| abstract_inverted_index.the | 8, 34, 41, 64, 90, 93, 100, 103, 129, 134, 144 |
| abstract_inverted_index.two | 2 |
| abstract_inverted_index.use | 80 |
| abstract_inverted_index.via | 133 |
| abstract_inverted_index.Both | 17 |
| abstract_inverted_index.ODE; | 141 |
| abstract_inverted_index.both | 165 |
| abstract_inverted_index.core | 28 |
| abstract_inverted_index.even | 70 |
| abstract_inverted_index.flow | 135 |
| abstract_inverted_index.here | 58 |
| abstract_inverted_index.lead | 159 |
| abstract_inverted_index.map, | 66 |
| abstract_inverted_index.maps | 86 |
| abstract_inverted_index.more | 154 |
| abstract_inverted_index.such | 54 |
| abstract_inverted_index.that | 6 |
| abstract_inverted_index.them | 169 |
| abstract_inverted_index.uses | 112 |
| abstract_inverted_index.with | 170 |
| abstract_inverted_index.(COT) | 15 |
| abstract_inverted_index.novel | 114 |
| abstract_inverted_index.tasks | 29 |
| abstract_inverted_index.train | 151 |
| abstract_inverted_index.using | 174 |
| abstract_inverted_index.which | 26 |
| abstract_inverted_index.chosen | 57 |
| abstract_inverted_index.enable | 19 |
| abstract_inverted_index.faster | 161 |
| abstract_inverted_index.neural | 3, 81, 109, 140 |
| abstract_inverted_index.offers | 153 |
| abstract_inverted_index.slower | 149 |
| abstract_inverted_index.static | 11, 97, 145 |
| abstract_inverted_index.target | 42 |
| abstract_inverted_index.choices | 156 |
| abstract_inverted_index.density | 24 |
| abstract_inverted_index.dynamic | 13, 126 |
| abstract_inverted_index.exploit | 89 |
| abstract_inverted_index.further | 88 |
| abstract_inverted_index.improve | 75 |
| abstract_inverted_index.inverse | 180 |
| abstract_inverted_index.methods | 39 |
| abstract_inverted_index.network | 4 |
| abstract_inverted_index.optimal | 131 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.Bayesian | 31, 179 |
| abstract_inverted_index.approach | 98, 127 |
| abstract_inverted_index.compared | 121, 142 |
| abstract_inverted_index.datasets | 176 |
| abstract_inverted_index.gradient | 104 |
| abstract_inverted_index.increase | 118 |
| abstract_inverted_index.modeling | 155 |
| abstract_inverted_index.moderate | 72 |
| abstract_inverted_index.network. | 110 |
| abstract_inverted_index.networks | 82 |
| abstract_inverted_index.problem. | 95 |
| abstract_inverted_index.sampling | 21 |
| abstract_inverted_index.setting. | 37 |
| abstract_inverted_index.Obtaining | 53 |
| abstract_inverted_index.approach, | 146 |
| abstract_inverted_index.benchmark | 175 |
| abstract_inverted_index.candidate | 85 |
| abstract_inverted_index.comparing | 168 |
| abstract_inverted_index.competing | 171 |
| abstract_inverted_index.numerical | 78, 115 |
| abstract_inverted_index.partially | 107 |
| abstract_inverted_index.problems. | 16, 181 |
| abstract_inverted_index.reference | 51 |
| abstract_inverted_index.represent | 40 |
| abstract_inverted_index.sampling. | 162 |
| abstract_inverted_index.solutions | 9 |
| abstract_inverted_index.structure | 91 |
| abstract_inverted_index.tractable | 50 |
| abstract_inverted_index.transport | 132 |
| abstract_inverted_index.algorithms | 79, 166 |
| abstract_inverted_index.approaches | 5, 18 |
| abstract_inverted_index.efficiency | 120 |
| abstract_inverted_index.approaches, | 173 |
| abstract_inverted_index.approximate | 7 |
| abstract_inverted_index.challenging | 69 |
| abstract_inverted_index.conditional | 20, 23, 43, 130 |
| abstract_inverted_index.demonstrate | 164 |
| abstract_inverted_index.dimensions. | 73 |
| abstract_inverted_index.estimation, | 25 |
| abstract_inverted_index.regularized | 139 |
| abstract_inverted_index.approximates | 99, 128 |
| abstract_inverted_index.distribution | 44 |
| abstract_inverted_index.input-convex | 108 |
| abstract_inverted_index.numerically, | 167 |
| abstract_inverted_index.parameterize | 84 |
| abstract_inverted_index.scalability, | 76 |
| abstract_inverted_index.alternatives. | 124 |
| abstract_inverted_index.approximation | 62 |
| abstract_inverted_index.computational | 119 |
| abstract_inverted_index.distribution. | 52 |
| abstract_inverted_index.implementation | 116 |
| abstract_inverted_index.transformation | 47 |
| abstract_inverted_index.computationally | 68 |
| abstract_inverted_index.transformation, | 56 |
| abstract_inverted_index.simulation-based | 35, 178 |
| abstract_inverted_index.state-of-the-art | 123, 172 |
| abstract_inverted_index.inference$\unicode{x2013}$particularly | 32 |
| abstract_inverted_index.($\unicode{x201C}$likelihood-free$\unicode{x201D}$) | 36 |
| abstract_inverted_index.$\unicode{x1D450}\unicode{x1D45C}\unicode{x1D45B}\unicode{x1D451}\unicode{x1D456}\unicode{x1D461}\unicode{x1D456}\unicode{x1D45C}\unicode{x1D45B}\unicode{x1D44E}\unicode{x1D459}\unicode{x0020}\unicode{x1D45C}\unicode{x1D45D}\unicode{x1D461}\unicode{x1D456}\unicode{x1D45A}\unicode{x1D44E}\unicode{x1D459}\unicode{x0020}\unicode{x1D461}\unicode{x1D45F}\unicode{x1D44E}\unicode{x1D45B}\unicode{x1D460}\unicode{x1D45D}\unicode{x1D45C}\unicode{x1D45F}\unicode{x1D461}$ | 14 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |