Efficient portfolio selection through preference aggregation with Quicksort and the Bradley–Terry model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.jocs.2025.102728
How to allocate limited resources to projects that will yield the greatest long-term benefits is a problem that often arises in decision-making under uncertainty. For example, organizations may need to evaluate and select innovation projects with risky returns. Similarly, when allocating resources to research projects, funding agencies are tasked with identifying the most promising proposals based on idiosyncratic criteria. Finally, in participatory budgeting, a local community may need to select a subset of public projects to fund. Regardless of context, agents must estimate the uncertain values of a potentially large number of projects. Developing parsimonious methods to compare these projects, and aggregating agent evaluations so that the overall benefit is maximized, are critical in assembling the best project portfolio. Unlike in standard sorting algorithms, evaluating projects on the basis of uncertain long-term benefits introduces additional complexities. We propose comparison rules based on Quicksort and the Bradley--Terry model, which connects rankings to pairwise "win" probabilities. In our model, each agent determines win probabilities of a pair of projects based on his or her specific evaluation of the projects' long-term benefit. The win probabilities are then appropriately aggregated and used to rank projects. Several of the methods we propose perform better than the two most effective aggregation methods currently available. Additionally, our methods can be combined with sampling techniques to significantly reduce the number of pairwise comparisons. We also discuss how the Bradley--Terry portfolio selection approach can be implemented in practice.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jocs.2025.102728
- OA Status
- hybrid
- Cited By
- 1
- References
- 47
- OpenAlex ID
- https://openalex.org/W4414904513
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414904513Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jocs.2025.102728Digital Object Identifier
- Title
-
Efficient portfolio selection through preference aggregation with Quicksort and the Bradley–Terry modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-07Full publication date if available
- Authors
-
Yufeng Ge, Lucas Böttcher, Tom Chou, Maria R. D’OrsognaList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jocs.2025.102728Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jocs.2025.102728Direct OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414904513 |
|---|---|
| doi | https://doi.org/10.1016/j.jocs.2025.102728 |
| ids.doi | https://doi.org/10.1016/j.jocs.2025.102728 |
| ids.openalex | https://openalex.org/W4414904513 |
| fwci | 5.50682111 |
| type | article |
| title | Efficient portfolio selection through preference aggregation with Quicksort and the Bradley–Terry model |
| biblio.issue | |
| biblio.volume | 92 |
| biblio.last_page | 102728 |
| biblio.first_page | 102728 |
| topics[0].id | https://openalex.org/T10050 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9861999750137329 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Multi-Criteria Decision Making |
| topics[1].id | https://openalex.org/T11106 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9634000062942505 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Data Management and Algorithms |
| is_xpac | False |
| apc_list.value | 2810 |
| apc_list.currency | USD |
| apc_list.value_usd | 2810 |
| apc_paid.value | 2810 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2810 |
| language | en |
| locations[0].id | doi:10.1016/j.jocs.2025.102728 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S192071280 |
| locations[0].source.issn | 1877-7503, 1877-7511 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1877-7503 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Computational Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Computational Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jocs.2025.102728 |
| locations[1].id | pmh:oai:arXiv.org:2504.16093 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2504.16093 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2504.16093 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5074442339 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4968-6520 |
| authorships[0].author.display_name | Yufeng Ge |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yurun Ge |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5088737112 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1700-1897 |
| authorships[1].author.display_name | Lucas Böttcher |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lucas Böttcher |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5044310323 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0785-6349 |
| authorships[2].author.display_name | Tom Chou |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tom Chou |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5060091952 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2828-9523 |
| authorships[3].author.display_name | Maria R. D’Orsogna |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Maria R. D’Orsogna |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jocs.2025.102728 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient portfolio selection through preference aggregation with Quicksort and the Bradley–Terry model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T23:15:26.331081 |
| primary_topic.id | https://openalex.org/T10050 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9861999750137329 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Multi-Criteria Decision Making |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.jocs.2025.102728 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S192071280 |
| best_oa_location.source.issn | 1877-7503, 1877-7511 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1877-7503 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Computational Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Computational Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jocs.2025.102728 |
| primary_location.id | doi:10.1016/j.jocs.2025.102728 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S192071280 |
| primary_location.source.issn | 1877-7503, 1877-7511 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1877-7503 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Computational Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Computational Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jocs.2025.102728 |
| publication_date | 2025-10-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3125089375, https://openalex.org/W4402631653, https://openalex.org/W3089003244, https://openalex.org/W4393065402, https://openalex.org/W3137712949, https://openalex.org/W2101347997, https://openalex.org/W4235295823, https://openalex.org/W2103322363, https://openalex.org/W2579555219, https://openalex.org/W2038435918, https://openalex.org/W2004996513, https://openalex.org/W2320532185, https://openalex.org/W2160637580, https://openalex.org/W1973196098, https://openalex.org/W2022838594, https://openalex.org/W4240491954, https://openalex.org/W4399138810, https://openalex.org/W4398169406, https://openalex.org/W4400723642, https://openalex.org/W2168715086, https://openalex.org/W2583276909, https://openalex.org/W284777917, https://openalex.org/W4403755142, https://openalex.org/W2488670713, https://openalex.org/W2990138404, https://openalex.org/W2791828207, https://openalex.org/W1491960436, https://openalex.org/W4250069761, https://openalex.org/W4235844763, https://openalex.org/W2914304175, https://openalex.org/W2122350398, https://openalex.org/W2763110165, https://openalex.org/W1584796555, https://openalex.org/W4372046852, https://openalex.org/W1583837637, https://openalex.org/W4283812891, https://openalex.org/W4411319177, https://openalex.org/W1978753906, https://openalex.org/W2124264256, https://openalex.org/W4376645549, https://openalex.org/W2016274652, https://openalex.org/W4405867735, https://openalex.org/W4360818870, https://openalex.org/W4290802753, https://openalex.org/W4388818431, https://openalex.org/W4412886888, https://openalex.org/W2606555609 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 15, 63, 70, 87, 163 |
| abstract_inverted_index.In | 154 |
| abstract_inverted_index.We | 136, 225 |
| abstract_inverted_index.be | 212, 235 |
| abstract_inverted_index.in | 20, 60, 113, 120, 237 |
| abstract_inverted_index.is | 14, 109 |
| abstract_inverted_index.of | 72, 78, 86, 91, 129, 162, 165, 174, 192, 222 |
| abstract_inverted_index.on | 56, 126, 141, 168 |
| abstract_inverted_index.or | 170 |
| abstract_inverted_index.so | 104 |
| abstract_inverted_index.to | 1, 5, 29, 42, 68, 75, 96, 150, 188, 217 |
| abstract_inverted_index.we | 195 |
| abstract_inverted_index.For | 24 |
| abstract_inverted_index.How | 0 |
| abstract_inverted_index.The | 179 |
| abstract_inverted_index.and | 31, 100, 143, 186 |
| abstract_inverted_index.are | 47, 111, 182 |
| abstract_inverted_index.can | 211, 234 |
| abstract_inverted_index.her | 171 |
| abstract_inverted_index.his | 169 |
| abstract_inverted_index.how | 228 |
| abstract_inverted_index.may | 27, 66 |
| abstract_inverted_index.our | 155, 209 |
| abstract_inverted_index.the | 10, 51, 83, 106, 115, 127, 144, 175, 193, 200, 220, 229 |
| abstract_inverted_index.two | 201 |
| abstract_inverted_index.win | 160, 180 |
| abstract_inverted_index.also | 226 |
| abstract_inverted_index.best | 116 |
| abstract_inverted_index.each | 157 |
| abstract_inverted_index.most | 52, 202 |
| abstract_inverted_index.must | 81 |
| abstract_inverted_index.need | 28, 67 |
| abstract_inverted_index.pair | 164 |
| abstract_inverted_index.rank | 189 |
| abstract_inverted_index.than | 199 |
| abstract_inverted_index.that | 7, 17, 105 |
| abstract_inverted_index.then | 183 |
| abstract_inverted_index.used | 187 |
| abstract_inverted_index.when | 39 |
| abstract_inverted_index.will | 8 |
| abstract_inverted_index.with | 35, 49, 214 |
| abstract_inverted_index."win" | 152 |
| abstract_inverted_index.agent | 102, 158 |
| abstract_inverted_index.based | 55, 140, 167 |
| abstract_inverted_index.basis | 128 |
| abstract_inverted_index.fund. | 76 |
| abstract_inverted_index.large | 89 |
| abstract_inverted_index.local | 64 |
| abstract_inverted_index.often | 18 |
| abstract_inverted_index.risky | 36 |
| abstract_inverted_index.rules | 139 |
| abstract_inverted_index.these | 98 |
| abstract_inverted_index.under | 22 |
| abstract_inverted_index.which | 147 |
| abstract_inverted_index.yield | 9 |
| abstract_inverted_index.Unlike | 119 |
| abstract_inverted_index.agents | 80 |
| abstract_inverted_index.arises | 19 |
| abstract_inverted_index.better | 198 |
| abstract_inverted_index.model, | 146, 156 |
| abstract_inverted_index.number | 90, 221 |
| abstract_inverted_index.public | 73 |
| abstract_inverted_index.reduce | 219 |
| abstract_inverted_index.select | 32, 69 |
| abstract_inverted_index.subset | 71 |
| abstract_inverted_index.tasked | 48 |
| abstract_inverted_index.values | 85 |
| abstract_inverted_index.Several | 191 |
| abstract_inverted_index.benefit | 108 |
| abstract_inverted_index.compare | 97 |
| abstract_inverted_index.discuss | 227 |
| abstract_inverted_index.funding | 45 |
| abstract_inverted_index.limited | 3 |
| abstract_inverted_index.methods | 95, 194, 205, 210 |
| abstract_inverted_index.overall | 107 |
| abstract_inverted_index.perform | 197 |
| abstract_inverted_index.problem | 16 |
| abstract_inverted_index.project | 117 |
| abstract_inverted_index.propose | 137, 196 |
| abstract_inverted_index.sorting | 122 |
| abstract_inverted_index.Finally, | 59 |
| abstract_inverted_index.agencies | 46 |
| abstract_inverted_index.allocate | 2 |
| abstract_inverted_index.approach | 233 |
| abstract_inverted_index.benefit. | 178 |
| abstract_inverted_index.benefits | 13, 132 |
| abstract_inverted_index.combined | 213 |
| abstract_inverted_index.connects | 148 |
| abstract_inverted_index.context, | 79 |
| abstract_inverted_index.critical | 112 |
| abstract_inverted_index.estimate | 82 |
| abstract_inverted_index.evaluate | 30 |
| abstract_inverted_index.example, | 25 |
| abstract_inverted_index.greatest | 11 |
| abstract_inverted_index.pairwise | 151, 223 |
| abstract_inverted_index.projects | 6, 34, 74, 125, 166 |
| abstract_inverted_index.rankings | 149 |
| abstract_inverted_index.research | 43 |
| abstract_inverted_index.returns. | 37 |
| abstract_inverted_index.sampling | 215 |
| abstract_inverted_index.specific | 172 |
| abstract_inverted_index.standard | 121 |
| abstract_inverted_index.Quicksort | 142 |
| abstract_inverted_index.community | 65 |
| abstract_inverted_index.criteria. | 58 |
| abstract_inverted_index.currently | 206 |
| abstract_inverted_index.effective | 203 |
| abstract_inverted_index.long-term | 12, 131, 177 |
| abstract_inverted_index.portfolio | 231 |
| abstract_inverted_index.practice. | 238 |
| abstract_inverted_index.projects' | 176 |
| abstract_inverted_index.projects, | 44, 99 |
| abstract_inverted_index.projects. | 92, 190 |
| abstract_inverted_index.promising | 53 |
| abstract_inverted_index.proposals | 54 |
| abstract_inverted_index.resources | 4, 41 |
| abstract_inverted_index.selection | 232 |
| abstract_inverted_index.uncertain | 84, 130 |
| abstract_inverted_index.Developing | 93 |
| abstract_inverted_index.Regardless | 77 |
| abstract_inverted_index.Similarly, | 38 |
| abstract_inverted_index.additional | 134 |
| abstract_inverted_index.aggregated | 185 |
| abstract_inverted_index.allocating | 40 |
| abstract_inverted_index.assembling | 114 |
| abstract_inverted_index.available. | 207 |
| abstract_inverted_index.budgeting, | 62 |
| abstract_inverted_index.comparison | 138 |
| abstract_inverted_index.determines | 159 |
| abstract_inverted_index.evaluating | 124 |
| abstract_inverted_index.evaluation | 173 |
| abstract_inverted_index.innovation | 33 |
| abstract_inverted_index.introduces | 133 |
| abstract_inverted_index.maximized, | 110 |
| abstract_inverted_index.portfolio. | 118 |
| abstract_inverted_index.techniques | 216 |
| abstract_inverted_index.aggregating | 101 |
| abstract_inverted_index.aggregation | 204 |
| abstract_inverted_index.algorithms, | 123 |
| abstract_inverted_index.evaluations | 103 |
| abstract_inverted_index.identifying | 50 |
| abstract_inverted_index.implemented | 236 |
| abstract_inverted_index.potentially | 88 |
| abstract_inverted_index.comparisons. | 224 |
| abstract_inverted_index.parsimonious | 94 |
| abstract_inverted_index.uncertainty. | 23 |
| abstract_inverted_index.Additionally, | 208 |
| abstract_inverted_index.appropriately | 184 |
| abstract_inverted_index.complexities. | 135 |
| abstract_inverted_index.idiosyncratic | 57 |
| abstract_inverted_index.organizations | 26 |
| abstract_inverted_index.participatory | 61 |
| abstract_inverted_index.probabilities | 161, 181 |
| abstract_inverted_index.significantly | 218 |
| abstract_inverted_index.Bradley--Terry | 145, 230 |
| abstract_inverted_index.probabilities. | 153 |
| abstract_inverted_index.decision-making | 21 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.93834795 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |