Efficient prediction of aerodynamic forces in rarefied flow using convolutional neural network based multi-process method Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1088/2632-2153/addf10
The direct simulation Monte Carlo (DSMC) is a widely used approach for studying aerodynamics effects of rarefied flows, but it is highly time-consuming and may exhibit statistical fluctuations. In this study, we propose an efficient aerodynamic prediction method based on convolutional neural networks (CNNs) to further explore the application of deep learning in improving the efficiency of DSMC for calculating the aerodynamics of rarefied flows. The method includes centroid aerodynamics forces prediction (CFP) and surface aerodynamic forces distribution prediction (SFP), both of which are trained using a dataset of free molecular flow around obstacles derived from DSMC simulations. The SFP is designed to bridge the gap between flow field and surface forces, with two characteristics extraction methods developed specifically for this purpose. Additionally, two data preprocessing methods are designed to suppress the statistical noise inherent in DSMC simulations. Both CFP and SFP have demonstrated optimal performance in terms of accuracy and resistance to overfitting, achieving considerable predictive accuracy. The SFP exhibits a significant speedup, enabling real-time prediction of aerodynamic distributions from flow field. The results demonstrate that the proposed CNN-based approach offers a promising solution for the efficient calculation of aerodynamic forces in rarefied flows, and provide a robust foundation for ongoing development.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/2632-2153/addf10
- OA Status
- gold
- Cited By
- 1
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410879299
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410879299Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/2632-2153/addf10Digital Object Identifier
- Title
-
Efficient prediction of aerodynamic forces in rarefied flow using convolutional neural network based multi-process methodWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-30Full publication date if available
- Authors
-
Haifeng Huang, Guobiao Cai, Chuanfeng Wei, Baiyi Zhang, Xiangyuan Cui, Yongjia Zhao, Huiyan Weng, Weizong Wang, Lihui Liu, He BijiaoList of authors in order
- Landing page
-
https://doi.org/10.1088/2632-2153/addf10Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/2632-2153/addf10Direct OA link when available
- Concepts
-
Aerodynamics, Aerodynamic force, Convolutional neural network, Computer science, Process (computing), Artificial neural network, Flow (mathematics), Aerospace engineering, Mechanics, Artificial intelligence, Physics, Engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410879299 |
|---|---|
| doi | https://doi.org/10.1088/2632-2153/addf10 |
| ids.doi | https://doi.org/10.1088/2632-2153/addf10 |
| ids.openalex | https://openalex.org/W4410879299 |
| fwci | 5.50682111 |
| type | article |
| title | Efficient prediction of aerodynamic forces in rarefied flow using convolutional neural network based multi-process method |
| biblio.issue | 2 |
| biblio.volume | 6 |
| biblio.last_page | 025060 |
| biblio.first_page | 025060 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.6266000270843506 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.5751000046730042 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T11344 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.5670999884605408 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Traffic Prediction and Management Techniques |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1962 |
| apc_paid.value | 1600 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1962 |
| concepts[0].id | https://openalex.org/C13393347 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6940435171127319 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8424 |
| concepts[0].display_name | Aerodynamics |
| concepts[1].id | https://openalex.org/C132557482 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6072870492935181 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3299483 |
| concepts[1].display_name | Aerodynamic force |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5950130224227905 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5300837755203247 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C98045186 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5219609141349792 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[4].display_name | Process (computing) |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4742645025253296 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C38349280 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4583325982093811 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[6].display_name | Flow (mathematics) |
| concepts[7].id | https://openalex.org/C146978453 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36302104592323303 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[7].display_name | Aerospace engineering |
| concepts[8].id | https://openalex.org/C57879066 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3588433265686035 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[8].display_name | Mechanics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.29883718490600586 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2254985272884369 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.17099371552467346 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/aerodynamics |
| keywords[0].score | 0.6940435171127319 |
| keywords[0].display_name | Aerodynamics |
| keywords[1].id | https://openalex.org/keywords/aerodynamic-force |
| keywords[1].score | 0.6072870492935181 |
| keywords[1].display_name | Aerodynamic force |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.5950130224227905 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5300837755203247 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/process |
| keywords[4].score | 0.5219609141349792 |
| keywords[4].display_name | Process (computing) |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.4742645025253296 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/flow |
| keywords[6].score | 0.4583325982093811 |
| keywords[6].display_name | Flow (mathematics) |
| keywords[7].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[7].score | 0.36302104592323303 |
| keywords[7].display_name | Aerospace engineering |
| keywords[8].id | https://openalex.org/keywords/mechanics |
| keywords[8].score | 0.3588433265686035 |
| keywords[8].display_name | Mechanics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.29883718490600586 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.2254985272884369 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.17099371552467346 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1088/2632-2153/addf10 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200687 |
| locations[0].source.issn | 2632-2153 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2632-2153 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Machine Learning Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning: Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.1088/2632-2153/addf10 |
| locations[1].id | pmh:oai:doaj.org/article:14028f58dd2d4fbaaed64a3a94f89b1c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Machine Learning: Science and Technology, Vol 6, Iss 2, p 025060 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/14028f58dd2d4fbaaed64a3a94f89b1c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5018125445 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-9120-7959 |
| authorships[0].author.display_name | Haifeng Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haifeng Huang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031605581 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7909-4622 |
| authorships[1].author.display_name | Guobiao Cai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guobiao Cai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5020735204 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Chuanfeng Wei |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chuanfeng Wei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5018058618 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5296-1418 |
| authorships[3].author.display_name | Baiyi Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Baiyi Zhang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5042480081 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3946-7324 |
| authorships[4].author.display_name | Xiangyuan Cui |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiang Cui |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5082426267 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4557-9066 |
| authorships[5].author.display_name | Yongjia Zhao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yongjia Zhao |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5090901608 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2419-4017 |
| authorships[6].author.display_name | Huiyan Weng |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Huiyan Weng |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5075193406 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6022-1441 |
| authorships[7].author.display_name | Weizong Wang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Weizong Wang |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100747139 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-3752-038X |
| authorships[8].author.display_name | Lihui Liu |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Lihui Liu |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5102806667 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | He Bijiao |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Bijiao He |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/2632-2153/addf10 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient prediction of aerodynamic forces in rarefied flow using convolutional neural network based multi-process method |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.6266000270843506 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W4391621807, https://openalex.org/W3174532159, https://openalex.org/W2586907399, https://openalex.org/W2911900619, https://openalex.org/W4205785837, https://openalex.org/W2353408829, https://openalex.org/W2316689026, https://openalex.org/W2080947273, https://openalex.org/W1988301227, https://openalex.org/W3090426981 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1088/2632-2153/addf10 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200687 |
| best_oa_location.source.issn | 2632-2153 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2632-2153 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Machine Learning Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning: Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1088/2632-2153/addf10 |
| primary_location.id | doi:10.1088/2632-2153/addf10 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200687 |
| primary_location.source.issn | 2632-2153 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2632-2153 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Machine Learning Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning: Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.1088/2632-2153/addf10 |
| publication_date | 2025-05-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4308969657, https://openalex.org/W2608654439, https://openalex.org/W4225264490, https://openalex.org/W2085573798, https://openalex.org/W1988783840, https://openalex.org/W2027579673, https://openalex.org/W2964624821, https://openalex.org/W2951857935, https://openalex.org/W3178816382, https://openalex.org/W3139258636, https://openalex.org/W4394919074, https://openalex.org/W3205983855, https://openalex.org/W4391661771, https://openalex.org/W3036289954, https://openalex.org/W3207819038, https://openalex.org/W4206734793, https://openalex.org/W4385493165, https://openalex.org/W4386457858, https://openalex.org/W4366982427, https://openalex.org/W4310522409, https://openalex.org/W4385059722, https://openalex.org/W6750886758, https://openalex.org/W3005641041, https://openalex.org/W3124389259, https://openalex.org/W4304823057, https://openalex.org/W2946771678, https://openalex.org/W3038687103, https://openalex.org/W6966935302, https://openalex.org/W4387460985, https://openalex.org/W3093190107, https://openalex.org/W4385813454, https://openalex.org/W4386366778, https://openalex.org/W3111914315, https://openalex.org/W2985383053, https://openalex.org/W4386461344, https://openalex.org/W3166845082, https://openalex.org/W4294647002, https://openalex.org/W1981363851, https://openalex.org/W2900936384, https://openalex.org/W2996290406, https://openalex.org/W2791192288, https://openalex.org/W2964362970, https://openalex.org/W4309699485, https://openalex.org/W6838657745, https://openalex.org/W6861182418 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 8, 87, 162, 183, 198 |
| abstract_inverted_index.In | 29 |
| abstract_inverted_index.an | 34 |
| abstract_inverted_index.in | 53, 136, 147, 193 |
| abstract_inverted_index.is | 7, 21, 101 |
| abstract_inverted_index.it | 20 |
| abstract_inverted_index.of | 16, 50, 57, 63, 82, 89, 149, 168, 190 |
| abstract_inverted_index.on | 40 |
| abstract_inverted_index.to | 45, 103, 130, 153 |
| abstract_inverted_index.we | 32 |
| abstract_inverted_index.CFP | 140 |
| abstract_inverted_index.SFP | 100, 142, 160 |
| abstract_inverted_index.The | 1, 66, 99, 159, 174 |
| abstract_inverted_index.and | 24, 74, 110, 141, 151, 196 |
| abstract_inverted_index.are | 84, 128 |
| abstract_inverted_index.but | 19 |
| abstract_inverted_index.for | 12, 59, 120, 186, 201 |
| abstract_inverted_index.gap | 106 |
| abstract_inverted_index.may | 25 |
| abstract_inverted_index.the | 48, 55, 61, 105, 132, 178, 187 |
| abstract_inverted_index.two | 114, 124 |
| abstract_inverted_index.Both | 139 |
| abstract_inverted_index.DSMC | 58, 97, 137 |
| abstract_inverted_index.both | 81 |
| abstract_inverted_index.data | 125 |
| abstract_inverted_index.deep | 51 |
| abstract_inverted_index.flow | 92, 108, 172 |
| abstract_inverted_index.free | 90 |
| abstract_inverted_index.from | 96, 171 |
| abstract_inverted_index.have | 143 |
| abstract_inverted_index.that | 177 |
| abstract_inverted_index.this | 30, 121 |
| abstract_inverted_index.used | 10 |
| abstract_inverted_index.with | 113 |
| abstract_inverted_index.(CFP) | 73 |
| abstract_inverted_index.Carlo | 5 |
| abstract_inverted_index.Monte | 4 |
| abstract_inverted_index.based | 39 |
| abstract_inverted_index.field | 109 |
| abstract_inverted_index.noise | 134 |
| abstract_inverted_index.terms | 148 |
| abstract_inverted_index.using | 86 |
| abstract_inverted_index.which | 83 |
| abstract_inverted_index.(CNNs) | 44 |
| abstract_inverted_index.(DSMC) | 6 |
| abstract_inverted_index.(SFP), | 80 |
| abstract_inverted_index.around | 93 |
| abstract_inverted_index.bridge | 104 |
| abstract_inverted_index.direct | 2 |
| abstract_inverted_index.field. | 173 |
| abstract_inverted_index.flows, | 18, 195 |
| abstract_inverted_index.flows. | 65 |
| abstract_inverted_index.forces | 71, 77, 192 |
| abstract_inverted_index.highly | 22 |
| abstract_inverted_index.method | 38, 67 |
| abstract_inverted_index.neural | 42 |
| abstract_inverted_index.offers | 182 |
| abstract_inverted_index.robust | 199 |
| abstract_inverted_index.study, | 31 |
| abstract_inverted_index.widely | 9 |
| abstract_inverted_index.between | 107 |
| abstract_inverted_index.dataset | 88 |
| abstract_inverted_index.derived | 95 |
| abstract_inverted_index.effects | 15 |
| abstract_inverted_index.exhibit | 26 |
| abstract_inverted_index.explore | 47 |
| abstract_inverted_index.forces, | 112 |
| abstract_inverted_index.further | 46 |
| abstract_inverted_index.methods | 117, 127 |
| abstract_inverted_index.ongoing | 202 |
| abstract_inverted_index.optimal | 145 |
| abstract_inverted_index.propose | 33 |
| abstract_inverted_index.provide | 197 |
| abstract_inverted_index.results | 175 |
| abstract_inverted_index.surface | 75, 111 |
| abstract_inverted_index.trained | 85 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 150 |
| abstract_inverted_index.approach | 11, 181 |
| abstract_inverted_index.centroid | 69 |
| abstract_inverted_index.designed | 102, 129 |
| abstract_inverted_index.enabling | 165 |
| abstract_inverted_index.exhibits | 161 |
| abstract_inverted_index.includes | 68 |
| abstract_inverted_index.inherent | 135 |
| abstract_inverted_index.learning | 52 |
| abstract_inverted_index.networks | 43 |
| abstract_inverted_index.proposed | 179 |
| abstract_inverted_index.purpose. | 122 |
| abstract_inverted_index.rarefied | 17, 64, 194 |
| abstract_inverted_index.solution | 185 |
| abstract_inverted_index.speedup, | 164 |
| abstract_inverted_index.studying | 13 |
| abstract_inverted_index.suppress | 131 |
| abstract_inverted_index.CNN-based | 180 |
| abstract_inverted_index.accuracy. | 158 |
| abstract_inverted_index.achieving | 155 |
| abstract_inverted_index.developed | 118 |
| abstract_inverted_index.efficient | 35, 188 |
| abstract_inverted_index.improving | 54 |
| abstract_inverted_index.molecular | 91 |
| abstract_inverted_index.obstacles | 94 |
| abstract_inverted_index.promising | 184 |
| abstract_inverted_index.real-time | 166 |
| abstract_inverted_index.efficiency | 56 |
| abstract_inverted_index.extraction | 116 |
| abstract_inverted_index.foundation | 200 |
| abstract_inverted_index.prediction | 37, 72, 79, 167 |
| abstract_inverted_index.predictive | 157 |
| abstract_inverted_index.resistance | 152 |
| abstract_inverted_index.simulation | 3 |
| abstract_inverted_index.aerodynamic | 36, 76, 169, 191 |
| abstract_inverted_index.application | 49 |
| abstract_inverted_index.calculating | 60 |
| abstract_inverted_index.calculation | 189 |
| abstract_inverted_index.demonstrate | 176 |
| abstract_inverted_index.performance | 146 |
| abstract_inverted_index.significant | 163 |
| abstract_inverted_index.statistical | 27, 133 |
| abstract_inverted_index.aerodynamics | 14, 62, 70 |
| abstract_inverted_index.considerable | 156 |
| abstract_inverted_index.demonstrated | 144 |
| abstract_inverted_index.development. | 203 |
| abstract_inverted_index.distribution | 78 |
| abstract_inverted_index.overfitting, | 154 |
| abstract_inverted_index.simulations. | 98, 138 |
| abstract_inverted_index.specifically | 119 |
| abstract_inverted_index.Additionally, | 123 |
| abstract_inverted_index.convolutional | 41 |
| abstract_inverted_index.distributions | 170 |
| abstract_inverted_index.fluctuations. | 28 |
| abstract_inverted_index.preprocessing | 126 |
| abstract_inverted_index.time-consuming | 23 |
| abstract_inverted_index.characteristics | 115 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.9121397 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |