Efficient View Path Planning for Autonomous Implicit Reconstruction Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2209.13159
Implicit neural representations have shown promising potential for the 3D scene reconstruction. Recent work applies it to autonomous 3D reconstruction by learning information gain for view path planning. Effective as it is, the computation of the information gain is expensive, and compared with that using volumetric representations, collision checking using the implicit representation for a 3D point is much slower. In the paper, we propose to 1) leverage a neural network as an implicit function approximator for the information gain field and 2) combine the implicit fine-grained representation with coarse volumetric representations to improve efficiency. Further with the improved efficiency, we propose a novel informative path planning based on a graph-based planner. Our method demonstrates significant improvements in the reconstruction quality and planning efficiency compared with autonomous reconstructions with implicit and explicit representations. We deploy the method on a real UAV and the results show that our method can plan informative views and reconstruct a scene with high quality.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2209.13159
- https://arxiv.org/pdf/2209.13159
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297945175
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297945175Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2209.13159Digital Object Identifier
- Title
-
Efficient View Path Planning for Autonomous Implicit ReconstructionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-27Full publication date if available
- Authors
-
Jing Zeng, Yanxu Li, Yunlong Ran, Shuo Li, Fei Gao, Lincheng Li, Shibo He, Jiming Chen, Qi YeList of authors in order
- Landing page
-
https://arxiv.org/abs/2209.13159Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2209.13159Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2209.13159Direct OA link when available
- Concepts
-
Leverage (statistics), Computer science, Motion planning, Planner, Representation (politics), Artificial intelligence, Computation, Path (computing), Graph, Artificial neural network, Computer vision, Theoretical computer science, Algorithm, Robot, Political science, Law, Politics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297945175 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2209.13159 |
| ids.doi | https://doi.org/10.48550/arxiv.2209.13159 |
| ids.openalex | https://openalex.org/W4297945175 |
| fwci | |
| type | preprint |
| title | Efficient View Path Planning for Autonomous Implicit Reconstruction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10586 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Robotic Path Planning Algorithms |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9991999864578247 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C153083717 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7841261625289917 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[0].display_name | Leverage (statistics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7410336136817932 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C81074085 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7186956405639648 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q366872 |
| concepts[2].display_name | Motion planning |
| concepts[3].id | https://openalex.org/C2776999362 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6794238090515137 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2349274 |
| concepts[3].display_name | Planner |
| concepts[4].id | https://openalex.org/C2776359362 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5639286637306213 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[4].display_name | Representation (politics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5359808802604675 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C45374587 |
| concepts[6].level | 2 |
| concepts[6].score | 0.521625816822052 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[6].display_name | Computation |
| concepts[7].id | https://openalex.org/C2777735758 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4762977659702301 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[7].display_name | Path (computing) |
| concepts[8].id | https://openalex.org/C132525143 |
| concepts[8].level | 2 |
| concepts[8].score | 0.468985378742218 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[8].display_name | Graph |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43055230379104614 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3381422162055969 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32679617404937744 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2891887426376343 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C90509273 |
| concepts[13].level | 2 |
| concepts[13].score | 0.26306086778640747 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[13].display_name | Robot |
| concepts[14].id | https://openalex.org/C17744445 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[14].display_name | Political science |
| concepts[15].id | https://openalex.org/C199539241 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[15].display_name | Law |
| concepts[16].id | https://openalex.org/C94625758 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[16].display_name | Politics |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/leverage |
| keywords[0].score | 0.7841261625289917 |
| keywords[0].display_name | Leverage (statistics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7410336136817932 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/motion-planning |
| keywords[2].score | 0.7186956405639648 |
| keywords[2].display_name | Motion planning |
| keywords[3].id | https://openalex.org/keywords/planner |
| keywords[3].score | 0.6794238090515137 |
| keywords[3].display_name | Planner |
| keywords[4].id | https://openalex.org/keywords/representation |
| keywords[4].score | 0.5639286637306213 |
| keywords[4].display_name | Representation (politics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5359808802604675 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computation |
| keywords[6].score | 0.521625816822052 |
| keywords[6].display_name | Computation |
| keywords[7].id | https://openalex.org/keywords/path |
| keywords[7].score | 0.4762977659702301 |
| keywords[7].display_name | Path (computing) |
| keywords[8].id | https://openalex.org/keywords/graph |
| keywords[8].score | 0.468985378742218 |
| keywords[8].display_name | Graph |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.43055230379104614 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.3381422162055969 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.32679617404937744 |
| keywords[11].display_name | Theoretical computer science |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.2891887426376343 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/robot |
| keywords[13].score | 0.26306086778640747 |
| keywords[13].display_name | Robot |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2209.13159 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2209.13159 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2209.13159 |
| locations[1].id | doi:10.48550/arxiv.2209.13159 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2209.13159 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100747916 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-4100-5869 |
| authorships[0].author.display_name | Jing Zeng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zeng, Jing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103759007 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yanxu Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Yanxu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023342187 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4074-6187 |
| authorships[2].author.display_name | Yunlong Ran |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ran, Yunlong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100386630 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5184-3230 |
| authorships[3].author.display_name | Shuo Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Shuo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5006918284 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9076-9718 |
| authorships[4].author.display_name | Fei Gao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gao, Fei |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5019036797 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6047-0472 |
| authorships[5].author.display_name | Lincheng Li |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Li, Lincheng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5068195118 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1505-6766 |
| authorships[6].author.display_name | Shibo He |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | He, Shibo |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100726041 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3155-3145 |
| authorships[7].author.display_name | Jiming Chen |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | chen, Jiming |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5052177334 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0328-5075 |
| authorships[8].author.display_name | Qi Ye |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Ye, Qi |
| authorships[8].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2209.13159 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Efficient View Path Planning for Autonomous Implicit Reconstruction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10586 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Robotic Path Planning Algorithms |
| related_works | https://openalex.org/W2155467318, https://openalex.org/W122632647, https://openalex.org/W2060743914, https://openalex.org/W2359600231, https://openalex.org/W187779371, https://openalex.org/W2380019117, https://openalex.org/W3138952546, https://openalex.org/W1987886368, https://openalex.org/W1660309994, https://openalex.org/W2369187583 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2209.13159 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2209.13159 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2209.13159 |
| primary_location.id | pmh:oai:arXiv.org:2209.13159 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2209.13159 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2209.13159 |
| publication_date | 2022-09-27 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 54, 68, 102, 109, 138, 154 |
| abstract_inverted_index.1) | 66 |
| abstract_inverted_index.2) | 82 |
| abstract_inverted_index.3D | 9, 18, 55 |
| abstract_inverted_index.In | 60 |
| abstract_inverted_index.We | 133 |
| abstract_inverted_index.an | 72 |
| abstract_inverted_index.as | 29, 71 |
| abstract_inverted_index.by | 20 |
| abstract_inverted_index.in | 117 |
| abstract_inverted_index.is | 38, 57 |
| abstract_inverted_index.it | 15, 30 |
| abstract_inverted_index.of | 34 |
| abstract_inverted_index.on | 108, 137 |
| abstract_inverted_index.to | 16, 65, 92 |
| abstract_inverted_index.we | 63, 100 |
| abstract_inverted_index.Our | 112 |
| abstract_inverted_index.UAV | 140 |
| abstract_inverted_index.and | 40, 81, 121, 130, 141, 152 |
| abstract_inverted_index.can | 148 |
| abstract_inverted_index.for | 7, 24, 53, 76 |
| abstract_inverted_index.is, | 31 |
| abstract_inverted_index.our | 146 |
| abstract_inverted_index.the | 8, 32, 35, 50, 61, 77, 84, 97, 118, 135, 142 |
| abstract_inverted_index.gain | 23, 37, 79 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.high | 157 |
| abstract_inverted_index.much | 58 |
| abstract_inverted_index.path | 26, 105 |
| abstract_inverted_index.plan | 149 |
| abstract_inverted_index.real | 139 |
| abstract_inverted_index.show | 144 |
| abstract_inverted_index.that | 43, 145 |
| abstract_inverted_index.view | 25 |
| abstract_inverted_index.with | 42, 88, 96, 125, 128, 156 |
| abstract_inverted_index.work | 13 |
| abstract_inverted_index.based | 107 |
| abstract_inverted_index.field | 80 |
| abstract_inverted_index.novel | 103 |
| abstract_inverted_index.point | 56 |
| abstract_inverted_index.scene | 10, 155 |
| abstract_inverted_index.shown | 4 |
| abstract_inverted_index.using | 44, 49 |
| abstract_inverted_index.views | 151 |
| abstract_inverted_index.Recent | 12 |
| abstract_inverted_index.coarse | 89 |
| abstract_inverted_index.deploy | 134 |
| abstract_inverted_index.method | 113, 136, 147 |
| abstract_inverted_index.neural | 1, 69 |
| abstract_inverted_index.paper, | 62 |
| abstract_inverted_index.Further | 95 |
| abstract_inverted_index.applies | 14 |
| abstract_inverted_index.combine | 83 |
| abstract_inverted_index.improve | 93 |
| abstract_inverted_index.network | 70 |
| abstract_inverted_index.propose | 64, 101 |
| abstract_inverted_index.quality | 120 |
| abstract_inverted_index.results | 143 |
| abstract_inverted_index.slower. | 59 |
| abstract_inverted_index.Implicit | 0 |
| abstract_inverted_index.checking | 48 |
| abstract_inverted_index.compared | 41, 124 |
| abstract_inverted_index.explicit | 131 |
| abstract_inverted_index.function | 74 |
| abstract_inverted_index.implicit | 51, 73, 85, 129 |
| abstract_inverted_index.improved | 98 |
| abstract_inverted_index.learning | 21 |
| abstract_inverted_index.leverage | 67 |
| abstract_inverted_index.planner. | 111 |
| abstract_inverted_index.planning | 106, 122 |
| abstract_inverted_index.quality. | 158 |
| abstract_inverted_index.Effective | 28 |
| abstract_inverted_index.collision | 47 |
| abstract_inverted_index.planning. | 27 |
| abstract_inverted_index.potential | 6 |
| abstract_inverted_index.promising | 5 |
| abstract_inverted_index.autonomous | 17, 126 |
| abstract_inverted_index.efficiency | 123 |
| abstract_inverted_index.expensive, | 39 |
| abstract_inverted_index.volumetric | 45, 90 |
| abstract_inverted_index.computation | 33 |
| abstract_inverted_index.efficiency, | 99 |
| abstract_inverted_index.efficiency. | 94 |
| abstract_inverted_index.graph-based | 110 |
| abstract_inverted_index.information | 22, 36, 78 |
| abstract_inverted_index.informative | 104, 150 |
| abstract_inverted_index.reconstruct | 153 |
| abstract_inverted_index.significant | 115 |
| abstract_inverted_index.approximator | 75 |
| abstract_inverted_index.demonstrates | 114 |
| abstract_inverted_index.fine-grained | 86 |
| abstract_inverted_index.improvements | 116 |
| abstract_inverted_index.reconstruction | 19, 119 |
| abstract_inverted_index.representation | 52, 87 |
| abstract_inverted_index.reconstruction. | 11 |
| abstract_inverted_index.reconstructions | 127 |
| abstract_inverted_index.representations | 2, 91 |
| abstract_inverted_index.representations, | 46 |
| abstract_inverted_index.representations. | 132 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |