Eig-PIELM: A Mesh-Free Approach for Efficient Eigen-Analysis with Physics-Informed Extreme Learning Machines Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.15343
In this work, a novel Eig-PIELM framework is proposed that extends physics-informed extreme learning machine for an efficient and accurate solution of linear eigenvalue problems. The method reformulates the governing differential equations into a compact algebraic system solvable in a single step. Boundary conditions are enforced exactly via an algebraic projection onto the boundary-admissible subspace, eliminating the computational overhead of penalty parameters, and backpropagation while preserving the computational advantages of extreme learning machines. The proposed framework is mesh-free and yields both eigenvalues and mode shapes simultaneously in one linear solve. The robustness and accuracy of the proposed framework is demonstrated through a range of benchmark problems. We believe that the mesh-free nature, solution structure and accuracy of Eig-PIELM makes it particularly valuable for parametric studies in mechanical, acoustic, and electromechanical systems where rapid frequency spectrum analysis is critical.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.15343
- https://arxiv.org/pdf/2508.15343
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416050905
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416050905Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.15343Digital Object Identifier
- Title
-
Eig-PIELM: A Mesh-Free Approach for Efficient Eigen-Analysis with Physics-Informed Extreme Learning MachinesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-21Full publication date if available
- Authors
-
R. K. Mishra, Smriti, Ganapathy Krishnamurthi, Balaji Vasan Srinivasan, Sundararajan NatarajanList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.15343Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.15343Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.15343Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416050905 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.15343 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.15343 |
| ids.openalex | https://openalex.org/W4416050905 |
| fwci | |
| type | preprint |
| title | Eig-PIELM: A Mesh-Free Approach for Efficient Eigen-Analysis with Physics-Informed Extreme Learning Machines |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.15343 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.15343 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.15343 |
| locations[1].id | doi:10.48550/arxiv.2508.15343 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.15343 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101520424 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0197-263X |
| authorships[0].author.display_name | R. K. Mishra |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mishra, Rishi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5120318536 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Smriti |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Smriti |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5048838919 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9262-7569 |
| authorships[2].author.display_name | Ganapathy Krishnamurthi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Krishnamurthi, Ganapathy |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101806421 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4426-7407 |
| authorships[3].author.display_name | Balaji Vasan Srinivasan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Srinivasan, Balaji |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5043706874 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0409-0096 |
| authorships[4].author.display_name | Sundararajan Natarajan |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Natarajan, Sundararajan |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.15343 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Eig-PIELM: A Mesh-Free Approach for Efficient Eigen-Analysis with Physics-Informed Extreme Learning Machines |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:50:22.399702 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.15343 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.15343 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.15343 |
| primary_location.id | pmh:oai:arXiv.org:2508.15343 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.15343 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.15343 |
| publication_date | 2025-08-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 33, 39, 101 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 106 |
| abstract_inverted_index.an | 16, 48 |
| abstract_inverted_index.in | 38, 86, 125 |
| abstract_inverted_index.is | 7, 76, 98, 136 |
| abstract_inverted_index.it | 119 |
| abstract_inverted_index.of | 21, 59, 69, 94, 103, 116 |
| abstract_inverted_index.The | 25, 73, 90 |
| abstract_inverted_index.and | 18, 62, 78, 82, 92, 114, 128 |
| abstract_inverted_index.are | 44 |
| abstract_inverted_index.for | 15, 122 |
| abstract_inverted_index.one | 87 |
| abstract_inverted_index.the | 28, 52, 56, 66, 95, 109 |
| abstract_inverted_index.via | 47 |
| abstract_inverted_index.both | 80 |
| abstract_inverted_index.into | 32 |
| abstract_inverted_index.mode | 83 |
| abstract_inverted_index.onto | 51 |
| abstract_inverted_index.that | 9, 108 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.makes | 118 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.range | 102 |
| abstract_inverted_index.rapid | 132 |
| abstract_inverted_index.step. | 41 |
| abstract_inverted_index.where | 131 |
| abstract_inverted_index.while | 64 |
| abstract_inverted_index.work, | 2 |
| abstract_inverted_index.linear | 22, 88 |
| abstract_inverted_index.method | 26 |
| abstract_inverted_index.shapes | 84 |
| abstract_inverted_index.single | 40 |
| abstract_inverted_index.solve. | 89 |
| abstract_inverted_index.system | 36 |
| abstract_inverted_index.yields | 79 |
| abstract_inverted_index.believe | 107 |
| abstract_inverted_index.compact | 34 |
| abstract_inverted_index.exactly | 46 |
| abstract_inverted_index.extends | 10 |
| abstract_inverted_index.extreme | 12, 70 |
| abstract_inverted_index.machine | 14 |
| abstract_inverted_index.nature, | 111 |
| abstract_inverted_index.penalty | 60 |
| abstract_inverted_index.studies | 124 |
| abstract_inverted_index.systems | 130 |
| abstract_inverted_index.through | 100 |
| abstract_inverted_index.Boundary | 42 |
| abstract_inverted_index.accuracy | 93, 115 |
| abstract_inverted_index.accurate | 19 |
| abstract_inverted_index.analysis | 135 |
| abstract_inverted_index.enforced | 45 |
| abstract_inverted_index.learning | 13, 71 |
| abstract_inverted_index.overhead | 58 |
| abstract_inverted_index.proposed | 8, 74, 96 |
| abstract_inverted_index.solution | 20, 112 |
| abstract_inverted_index.solvable | 37 |
| abstract_inverted_index.spectrum | 134 |
| abstract_inverted_index.valuable | 121 |
| abstract_inverted_index.Eig-PIELM | 5, 117 |
| abstract_inverted_index.acoustic, | 127 |
| abstract_inverted_index.algebraic | 35, 49 |
| abstract_inverted_index.benchmark | 104 |
| abstract_inverted_index.critical. | 137 |
| abstract_inverted_index.efficient | 17 |
| abstract_inverted_index.equations | 31 |
| abstract_inverted_index.framework | 6, 75, 97 |
| abstract_inverted_index.frequency | 133 |
| abstract_inverted_index.governing | 29 |
| abstract_inverted_index.machines. | 72 |
| abstract_inverted_index.mesh-free | 77, 110 |
| abstract_inverted_index.problems. | 24, 105 |
| abstract_inverted_index.structure | 113 |
| abstract_inverted_index.subspace, | 54 |
| abstract_inverted_index.advantages | 68 |
| abstract_inverted_index.conditions | 43 |
| abstract_inverted_index.eigenvalue | 23 |
| abstract_inverted_index.parametric | 123 |
| abstract_inverted_index.preserving | 65 |
| abstract_inverted_index.projection | 50 |
| abstract_inverted_index.robustness | 91 |
| abstract_inverted_index.eigenvalues | 81 |
| abstract_inverted_index.eliminating | 55 |
| abstract_inverted_index.mechanical, | 126 |
| abstract_inverted_index.parameters, | 61 |
| abstract_inverted_index.demonstrated | 99 |
| abstract_inverted_index.differential | 30 |
| abstract_inverted_index.particularly | 120 |
| abstract_inverted_index.reformulates | 27 |
| abstract_inverted_index.computational | 57, 67 |
| abstract_inverted_index.simultaneously | 85 |
| abstract_inverted_index.backpropagation | 63 |
| abstract_inverted_index.physics-informed | 11 |
| abstract_inverted_index.electromechanical | 129 |
| abstract_inverted_index.boundary-admissible | 53 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |