Eigenvalues of Adjacency and Laplacian Matrices of Bracelet—Kn Graph Article Swipe
E R Albirri
,
Arif Fatahillah
,
S Hussen
,
Kiki Ariyanti Sugeng
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/1839/1/012038
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/1839/1/012038
Let G be an undirected simple graph. Adjacency matrix of a graph G , denoted by ( A ( G )), is defined as a matrix which has entry-( i , j ) is equal 1 if vertex i and vertex j are adjacent and 0 if otherwise. Let D ( G ) be the diagonal matrix of vertex degree and J ( G ) be the matrix which has entry all ones. Laplacian matrix ( L ( G )) can be defined by L ( G ) = D ( G ) – A ( G ). This study discusses eigenvalues of adjacency and Laplacian matrices of the Bracelet— K n graph. The results of this study indicate that the Bracelet— K n graph for n ≥ 4, n even has four different eigenvalues of adjacency and Laplacian matrices.
Related Topics
Concepts
Adjacency matrix
Combinatorics
Graph energy
Degree matrix
Eigenvalues and eigenvectors
Mathematics
Laplacian matrix
Vertex (graph theory)
Adjacency list
Diagonal matrix
Laplace operator
Graph
Regular graph
Diagonal
Discrete mathematics
Graph power
Physics
Line graph
Mathematical analysis
Geometry
Quantum mechanics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/1839/1/012038
- https://iopscience.iop.org/article/10.1088/1742-6596/1839/1/012038/pdf
- OA Status
- diamond
- References
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3137350570
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3137350570Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/1839/1/012038Digital Object Identifier
- Title
-
Eigenvalues of Adjacency and Laplacian Matrices of Bracelet—Kn GraphWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-03-01Full publication date if available
- Authors
-
E R Albirri, Arif Fatahillah, S Hussen, Kiki Ariyanti SugengList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/1839/1/012038Publisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/1839/1/012038/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/1839/1/012038/pdfDirect OA link when available
- Concepts
-
Adjacency matrix, Combinatorics, Graph energy, Degree matrix, Eigenvalues and eigenvectors, Mathematics, Laplacian matrix, Vertex (graph theory), Adjacency list, Diagonal matrix, Laplace operator, Graph, Regular graph, Diagonal, Discrete mathematics, Graph power, Physics, Line graph, Mathematical analysis, Geometry, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
2Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3137350570 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/1839/1/012038 |
| ids.doi | https://doi.org/10.1088/1742-6596/1839/1/012038 |
| ids.mag | 3137350570 |
| ids.openalex | https://openalex.org/W3137350570 |
| fwci | 0.0 |
| type | article |
| title | Eigenvalues of Adjacency and Laplacian Matrices of Bracelet—Kn Graph |
| biblio.issue | 1 |
| biblio.volume | 1839 |
| biblio.last_page | 012038 |
| biblio.first_page | 012038 |
| topics[0].id | https://openalex.org/T11476 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2608 |
| topics[0].subfield.display_name | Geometry and Topology |
| topics[0].display_name | Graph theory and applications |
| topics[1].id | https://openalex.org/T11716 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9954000115394592 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Random Matrices and Applications |
| topics[2].id | https://openalex.org/T12541 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9941999912261963 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Graph Labeling and Dimension Problems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C180356752 |
| concepts[0].level | 3 |
| concepts[0].score | 0.861858606338501 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q727035 |
| concepts[0].display_name | Adjacency matrix |
| concepts[1].id | https://openalex.org/C114614502 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7806417346000671 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[1].display_name | Combinatorics |
| concepts[2].id | https://openalex.org/C78913703 |
| concepts[2].level | 5 |
| concepts[2].score | 0.7350850105285645 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5597087 |
| concepts[2].display_name | Graph energy |
| concepts[3].id | https://openalex.org/C162199024 |
| concepts[3].level | 5 |
| concepts[3].score | 0.7067115306854248 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3085391 |
| concepts[3].display_name | Degree matrix |
| concepts[4].id | https://openalex.org/C158693339 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6516003608703613 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[4].display_name | Eigenvalues and eigenvectors |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.641838550567627 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C115178988 |
| concepts[6].level | 3 |
| concepts[6].score | 0.6411353945732117 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q772067 |
| concepts[6].display_name | Laplacian matrix |
| concepts[7].id | https://openalex.org/C80899671 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5934086441993713 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1304193 |
| concepts[7].display_name | Vertex (graph theory) |
| concepts[8].id | https://openalex.org/C110484373 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5499847531318665 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q264398 |
| concepts[8].display_name | Adjacency list |
| concepts[9].id | https://openalex.org/C113313756 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4820445477962494 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q332791 |
| concepts[9].display_name | Diagonal matrix |
| concepts[10].id | https://openalex.org/C165700671 |
| concepts[10].level | 2 |
| concepts[10].score | 0.472549170255661 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q203484 |
| concepts[10].display_name | Laplace operator |
| concepts[11].id | https://openalex.org/C132525143 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4681827127933502 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[11].display_name | Graph |
| concepts[12].id | https://openalex.org/C123482549 |
| concepts[12].level | 5 |
| concepts[12].score | 0.4173992872238159 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q826467 |
| concepts[12].display_name | Regular graph |
| concepts[13].id | https://openalex.org/C130367717 |
| concepts[13].level | 2 |
| concepts[13].score | 0.41696590185165405 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q189791 |
| concepts[13].display_name | Diagonal |
| concepts[14].id | https://openalex.org/C118615104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3811921179294586 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[14].display_name | Discrete mathematics |
| concepts[15].id | https://openalex.org/C149530733 |
| concepts[15].level | 4 |
| concepts[15].score | 0.31847649812698364 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5597091 |
| concepts[15].display_name | Graph power |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.15054520964622498 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C203776342 |
| concepts[17].level | 3 |
| concepts[17].score | 0.1319240927696228 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1378376 |
| concepts[17].display_name | Line graph |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.09918096661567688 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.06001564860343933 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/adjacency-matrix |
| keywords[0].score | 0.861858606338501 |
| keywords[0].display_name | Adjacency matrix |
| keywords[1].id | https://openalex.org/keywords/combinatorics |
| keywords[1].score | 0.7806417346000671 |
| keywords[1].display_name | Combinatorics |
| keywords[2].id | https://openalex.org/keywords/graph-energy |
| keywords[2].score | 0.7350850105285645 |
| keywords[2].display_name | Graph energy |
| keywords[3].id | https://openalex.org/keywords/degree-matrix |
| keywords[3].score | 0.7067115306854248 |
| keywords[3].display_name | Degree matrix |
| keywords[4].id | https://openalex.org/keywords/eigenvalues-and-eigenvectors |
| keywords[4].score | 0.6516003608703613 |
| keywords[4].display_name | Eigenvalues and eigenvectors |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.641838550567627 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/laplacian-matrix |
| keywords[6].score | 0.6411353945732117 |
| keywords[6].display_name | Laplacian matrix |
| keywords[7].id | https://openalex.org/keywords/vertex |
| keywords[7].score | 0.5934086441993713 |
| keywords[7].display_name | Vertex (graph theory) |
| keywords[8].id | https://openalex.org/keywords/adjacency-list |
| keywords[8].score | 0.5499847531318665 |
| keywords[8].display_name | Adjacency list |
| keywords[9].id | https://openalex.org/keywords/diagonal-matrix |
| keywords[9].score | 0.4820445477962494 |
| keywords[9].display_name | Diagonal matrix |
| keywords[10].id | https://openalex.org/keywords/laplace-operator |
| keywords[10].score | 0.472549170255661 |
| keywords[10].display_name | Laplace operator |
| keywords[11].id | https://openalex.org/keywords/graph |
| keywords[11].score | 0.4681827127933502 |
| keywords[11].display_name | Graph |
| keywords[12].id | https://openalex.org/keywords/regular-graph |
| keywords[12].score | 0.4173992872238159 |
| keywords[12].display_name | Regular graph |
| keywords[13].id | https://openalex.org/keywords/diagonal |
| keywords[13].score | 0.41696590185165405 |
| keywords[13].display_name | Diagonal |
| keywords[14].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[14].score | 0.3811921179294586 |
| keywords[14].display_name | Discrete mathematics |
| keywords[15].id | https://openalex.org/keywords/graph-power |
| keywords[15].score | 0.31847649812698364 |
| keywords[15].display_name | Graph power |
| keywords[16].id | https://openalex.org/keywords/physics |
| keywords[16].score | 0.15054520964622498 |
| keywords[16].display_name | Physics |
| keywords[17].id | https://openalex.org/keywords/line-graph |
| keywords[17].score | 0.1319240927696228 |
| keywords[17].display_name | Line graph |
| keywords[18].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[18].score | 0.09918096661567688 |
| keywords[18].display_name | Mathematical analysis |
| keywords[19].id | https://openalex.org/keywords/geometry |
| keywords[19].score | 0.06001564860343933 |
| keywords[19].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/1839/1/012038 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/1839/1/012038/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/1839/1/012038 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5082414775 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | E R Albirri |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3129486149 |
| authorships[0].affiliations[0].raw_affiliation_string | KOMPUSTABEL Research Group, University of Jember, Jember, Indonesia |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I3129486149 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Mathematics Education, University of Jember, Jember, Indonesia |
| authorships[0].institutions[0].id | https://openalex.org/I3129486149 |
| authorships[0].institutions[0].ror | https://ror.org/049f0ha78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3129486149 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Universitas Jember |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | E R Albirri |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics Education, University of Jember, Jember, Indonesia, KOMPUSTABEL Research Group, University of Jember, Jember, Indonesia |
| authorships[1].author.id | https://openalex.org/A5014966829 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3907-239X |
| authorships[1].author.display_name | Arif Fatahillah |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3129486149 |
| authorships[1].affiliations[0].raw_affiliation_string | KOMPUSTABEL Research Group, University of Jember, Jember, Indonesia |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I3129486149 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Mathematics Education, University of Jember, Jember, Indonesia |
| authorships[1].institutions[0].id | https://openalex.org/I3129486149 |
| authorships[1].institutions[0].ror | https://ror.org/049f0ha78 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3129486149 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | Universitas Jember |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | A Fatahillah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics Education, University of Jember, Jember, Indonesia, KOMPUSTABEL Research Group, University of Jember, Jember, Indonesia |
| authorships[2].author.id | https://openalex.org/A5109628549 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | S Hussen |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3129486149 |
| authorships[2].affiliations[0].raw_affiliation_string | KOMPUSTABEL Research Group, University of Jember, Jember, Indonesia |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I3129486149 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Mathematics Education, University of Jember, Jember, Indonesia |
| authorships[2].institutions[0].id | https://openalex.org/I3129486149 |
| authorships[2].institutions[0].ror | https://ror.org/049f0ha78 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3129486149 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Universitas Jember |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | S Hussen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics Education, University of Jember, Jember, Indonesia, KOMPUSTABEL Research Group, University of Jember, Jember, Indonesia |
| authorships[3].author.id | https://openalex.org/A5067576530 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9730-1405 |
| authorships[3].author.display_name | Kiki Ariyanti Sugeng |
| authorships[3].countries | ID |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I29617571 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mathematics, Universitas Indonesia, Depok, Indonesia |
| authorships[3].institutions[0].id | https://openalex.org/I29617571 |
| authorships[3].institutions[0].ror | https://ror.org/0116zj450 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I29617571 |
| authorships[3].institutions[0].country_code | ID |
| authorships[3].institutions[0].display_name | University of Indonesia |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | K A Sugeng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mathematics, Universitas Indonesia, Depok, Indonesia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.1088/1742-6596/1839/1/012038/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-03-29T00:00:00 |
| display_name | Eigenvalues of Adjacency and Laplacian Matrices of Bracelet—Kn Graph |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11476 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2608 |
| primary_topic.subfield.display_name | Geometry and Topology |
| primary_topic.display_name | Graph theory and applications |
| related_works | https://openalex.org/W3090739087, https://openalex.org/W3202178314, https://openalex.org/W2383534452, https://openalex.org/W3170778148, https://openalex.org/W1974398340, https://openalex.org/W2748456403, https://openalex.org/W3203952454, https://openalex.org/W2586946159, https://openalex.org/W3215173006, https://openalex.org/W2185406473 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/1839/1/012038 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/1839/1/012038/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/1839/1/012038 |
| primary_location.id | doi:10.1088/1742-6596/1839/1/012038 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/1839/1/012038/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/1839/1/012038 |
| publication_date | 2021-03-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1964944793, https://openalex.org/W3104043637 |
| referenced_works_count | 2 |
| abstract_inverted_index.( | 17, 19, 51, 63, 76, 78, 86, 91, 96 |
| abstract_inverted_index.) | 33, 53, 65, 88, 93 |
| abstract_inverted_index., | 14, 31 |
| abstract_inverted_index.0 | 46 |
| abstract_inverted_index.1 | 36 |
| abstract_inverted_index.= | 89 |
| abstract_inverted_index.A | 18, 95 |
| abstract_inverted_index.D | 50, 90 |
| abstract_inverted_index.G | 2, 13, 20, 52, 64, 79, 87, 92, 97 |
| abstract_inverted_index.J | 62 |
| abstract_inverted_index.K | 111, 123 |
| abstract_inverted_index.L | 77, 85 |
| abstract_inverted_index.a | 11, 25 |
| abstract_inverted_index.i | 30, 39 |
| abstract_inverted_index.j | 32, 42 |
| abstract_inverted_index.n | 112, 124, 127, 130 |
| abstract_inverted_index.)) | 80 |
| abstract_inverted_index.). | 98 |
| abstract_inverted_index.4, | 129 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.as | 24 |
| abstract_inverted_index.be | 3, 54, 66, 82 |
| abstract_inverted_index.by | 16, 84 |
| abstract_inverted_index.if | 37, 47 |
| abstract_inverted_index.is | 22, 34 |
| abstract_inverted_index.of | 10, 58, 103, 108, 116, 136 |
| abstract_inverted_index.)), | 21 |
| abstract_inverted_index.Let | 1, 49 |
| abstract_inverted_index.The | 114 |
| abstract_inverted_index.all | 72 |
| abstract_inverted_index.and | 40, 45, 61, 105, 138 |
| abstract_inverted_index.are | 43 |
| abstract_inverted_index.can | 81 |
| abstract_inverted_index.for | 126 |
| abstract_inverted_index.has | 28, 70, 132 |
| abstract_inverted_index.the | 55, 67, 109, 121 |
| abstract_inverted_index.– | 94 |
| abstract_inverted_index.≥ | 128 |
| abstract_inverted_index.This | 99 |
| abstract_inverted_index.even | 131 |
| abstract_inverted_index.four | 133 |
| abstract_inverted_index.that | 120 |
| abstract_inverted_index.this | 117 |
| abstract_inverted_index.entry | 71 |
| abstract_inverted_index.equal | 35 |
| abstract_inverted_index.graph | 12, 125 |
| abstract_inverted_index.ones. | 73 |
| abstract_inverted_index.study | 100, 118 |
| abstract_inverted_index.which | 27, 69 |
| abstract_inverted_index.degree | 60 |
| abstract_inverted_index.graph. | 7, 113 |
| abstract_inverted_index.matrix | 9, 26, 57, 68, 75 |
| abstract_inverted_index.simple | 6 |
| abstract_inverted_index.vertex | 38, 41, 59 |
| abstract_inverted_index.defined | 23, 83 |
| abstract_inverted_index.denoted | 15 |
| abstract_inverted_index.entry-( | 29 |
| abstract_inverted_index.results | 115 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.adjacent | 44 |
| abstract_inverted_index.diagonal | 56 |
| abstract_inverted_index.indicate | 119 |
| abstract_inverted_index.matrices | 107 |
| abstract_inverted_index.Adjacency | 8 |
| abstract_inverted_index.Laplacian | 74, 106, 139 |
| abstract_inverted_index.adjacency | 104, 137 |
| abstract_inverted_index.different | 134 |
| abstract_inverted_index.discusses | 101 |
| abstract_inverted_index.matrices. | 140 |
| abstract_inverted_index.otherwise. | 48 |
| abstract_inverted_index.undirected | 5 |
| abstract_inverted_index.Bracelet— | 110, 122 |
| abstract_inverted_index.eigenvalues | 102, 135 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.1057266 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |