E(n) Equivariant Graph Neural Network for Learning Interactional Properties of Molecules Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1021/acs.jpcb.3c07304
We have developed a multi-input E(n) equivariant graph convolution-based model designed for the prediction of chemical properties that result from the interaction of heterogeneous molecular structures. By incorporating spatial features and constraining the functions learned from these features to be equivariant to E(n) symmetries, the interactional-equivariant graph neural network (IEGNN) can efficiently learn from the 3D structure of multiple molecules. To verify the IEGNN's capability to learn interactional properties, we tested the model's performance on three molecular data sets, two of which are curated in this study and made publicly available for future interactional model benchmarking. To enable the loading of these data sets, an open-source data structure based on the PyTorch Geometric library for batch loading multigraph data points is also created. Finally, the IEGNN's performance on a data set consisting of an unknown interactional relationship (the frictional properties resulting between monolayers with variable composition) is examined. The IEGNN model developed was found to have the lowest mean absolute percent error for the predicted tribological properties of four of the six data sets when compared to previous methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1021/acs.jpcb.3c07304
- https://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.3c07304
- OA Status
- hybrid
- Cited By
- 10
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390936165
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390936165Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1021/acs.jpcb.3c07304Digital Object Identifier
- Title
-
E(n) Equivariant Graph Neural Network for Learning Interactional Properties of MoleculesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-17Full publication date if available
- Authors
-
Kieran Nehil-Puleo, Co D. Quach, Nicholas C. Craven, Clare MCabe, Peter T. CummingsList of authors in order
- Landing page
-
https://doi.org/10.1021/acs.jpcb.3c07304Publisher landing page
- PDF URL
-
https://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.3c07304Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.3c07304Direct OA link when available
- Concepts
-
Equivariant map, Graph, Computer science, Artificial neural network, Benchmarking, Homogeneous space, Set (abstract data type), Theoretical computer science, Artificial intelligence, Mathematics, Pure mathematics, Programming language, Geometry, Business, MarketingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390936165 |
|---|---|
| doi | https://doi.org/10.1021/acs.jpcb.3c07304 |
| ids.doi | https://doi.org/10.1021/acs.jpcb.3c07304 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38232317 |
| ids.openalex | https://openalex.org/W4390936165 |
| fwci | 1.69344175 |
| type | article |
| title | E(n) Equivariant Graph Neural Network for Learning Interactional Properties of Molecules |
| awards[0].id | https://openalex.org/G8912783711 |
| awards[0].funder_id | https://openalex.org/F4320337367 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2119575 |
| awards[0].funder_display_name | Division of Materials Research |
| awards[1].id | https://openalex.org/G4585264069 |
| awards[1].funder_id | https://openalex.org/F4320337377 |
| awards[1].display_name | |
| awards[1].funder_award_id | 1835874 |
| awards[1].funder_display_name | Office of Advanced Cyberinfrastructure |
| awards[2].id | https://openalex.org/G5331468203 |
| awards[2].funder_id | https://openalex.org/F4320337390 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2052438 |
| awards[2].funder_display_name | Division of Chemical, Bioengineering, Environmental, and Transport Systems |
| awards[3].id | https://openalex.org/G8474695403 |
| awards[3].funder_id | https://openalex.org/F4320334627 |
| awards[3].display_name | |
| awards[3].funder_award_id | EP/Y006143/1 |
| awards[3].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | 4 |
| biblio.volume | 128 |
| biblio.last_page | 1117 |
| biblio.first_page | 1108 |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T10044 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9861999750137329 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Protein Structure and Dynamics |
| funders[0].id | https://openalex.org/F4320309151 |
| funders[0].ror | https://ror.org/02vm5rt34 |
| funders[0].display_name | Vanderbilt University |
| funders[1].id | https://openalex.org/F4320334627 |
| funders[1].ror | https://ror.org/0439y7842 |
| funders[1].display_name | Engineering and Physical Sciences Research Council |
| funders[2].id | https://openalex.org/F4320337367 |
| funders[2].ror | https://ror.org/01pc7k308 |
| funders[2].display_name | Division of Materials Research |
| funders[3].id | https://openalex.org/F4320337377 |
| funders[3].ror | https://ror.org/04nh1dc89 |
| funders[3].display_name | Office of Advanced Cyberinfrastructure |
| funders[4].id | https://openalex.org/F4320337390 |
| funders[4].ror | https://ror.org/0471zv972 |
| funders[4].display_name | Division of Chemical, Bioengineering, Environmental, and Transport Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C171036898 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8665711879730225 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q256355 |
| concepts[0].display_name | Equivariant map |
| concepts[1].id | https://openalex.org/C132525143 |
| concepts[1].level | 2 |
| concepts[1].score | 0.598537266254425 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[1].display_name | Graph |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5163322687149048 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4932212233543396 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C86251818 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4854901134967804 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[4].display_name | Benchmarking |
| concepts[5].id | https://openalex.org/C96469262 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4348083734512329 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1324364 |
| concepts[5].display_name | Homogeneous space |
| concepts[6].id | https://openalex.org/C177264268 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42831748723983765 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[6].display_name | Set (abstract data type) |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3909223973751068 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.37222301959991455 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.28755033016204834 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C202444582 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1674644947052002 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[10].display_name | Pure mathematics |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10528036952018738 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09683769941329956 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| concepts[13].id | https://openalex.org/C144133560 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[13].display_name | Business |
| concepts[14].id | https://openalex.org/C162853370 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[14].display_name | Marketing |
| keywords[0].id | https://openalex.org/keywords/equivariant-map |
| keywords[0].score | 0.8665711879730225 |
| keywords[0].display_name | Equivariant map |
| keywords[1].id | https://openalex.org/keywords/graph |
| keywords[1].score | 0.598537266254425 |
| keywords[1].display_name | Graph |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5163322687149048 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.4932212233543396 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/benchmarking |
| keywords[4].score | 0.4854901134967804 |
| keywords[4].display_name | Benchmarking |
| keywords[5].id | https://openalex.org/keywords/homogeneous-space |
| keywords[5].score | 0.4348083734512329 |
| keywords[5].display_name | Homogeneous space |
| keywords[6].id | https://openalex.org/keywords/set |
| keywords[6].score | 0.42831748723983765 |
| keywords[6].display_name | Set (abstract data type) |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.3909223973751068 |
| keywords[7].display_name | Theoretical computer science |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.37222301959991455 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.28755033016204834 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/pure-mathematics |
| keywords[10].score | 0.1674644947052002 |
| keywords[10].display_name | Pure mathematics |
| keywords[11].id | https://openalex.org/keywords/programming-language |
| keywords[11].score | 0.10528036952018738 |
| keywords[11].display_name | Programming language |
| keywords[12].id | https://openalex.org/keywords/geometry |
| keywords[12].score | 0.09683769941329956 |
| keywords[12].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1021/acs.jpcb.3c07304 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S185621672 |
| locations[0].source.issn | 1520-5207, 1520-6106 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1520-5207 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | The Journal of Physical Chemistry B |
| locations[0].source.host_organization | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_name | American Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_lineage_names | American Chemical Society |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.3c07304 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Journal of Physical Chemistry B |
| locations[0].landing_page_url | https://doi.org/10.1021/acs.jpcb.3c07304 |
| locations[1].id | pmid:38232317 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | The journal of physical chemistry. B |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38232317 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10839827 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10839827/pdf/jp3c07304.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Phys Chem B |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10839827 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5083888363 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1505-2554 |
| authorships[0].author.display_name | Kieran Nehil-Puleo |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[0].affiliations[0].raw_affiliation_string | Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States |
| authorships[0].institutions[0].id | https://openalex.org/I200719446 |
| authorships[0].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Vanderbilt University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kieran Nehil-Puleo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States |
| authorships[1].author.id | https://openalex.org/A5051579231 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1255-4161 |
| authorships[1].author.display_name | Co D. Quach |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1826, United States |
| authorships[1].institutions[0].id | https://openalex.org/I200719446 |
| authorships[1].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Vanderbilt University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Co D. Quach |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1826, United States |
| authorships[2].author.id | https://openalex.org/A5076926873 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nicholas C. Craven |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[2].affiliations[0].raw_affiliation_string | Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States |
| authorships[2].institutions[0].id | https://openalex.org/I200719446 |
| authorships[2].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Vanderbilt University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nicholas C. Craven |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States |
| authorships[3].author.id | https://openalex.org/A5110604291 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Clare MCabe |
| authorships[3].countries | GB, US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I32062511 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, U.K. |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I200719446 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1826, United States |
| authorships[3].institutions[0].id | https://openalex.org/I32062511 |
| authorships[3].institutions[0].ror | https://ror.org/04mghma93 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I32062511 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Heriot-Watt University |
| authorships[3].institutions[1].id | https://openalex.org/I200719446 |
| authorships[3].institutions[1].ror | https://ror.org/02vm5rt34 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I200719446 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Vanderbilt University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Clare MCabe |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1826, United States, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, U.K. |
| authorships[4].author.id | https://openalex.org/A5049584797 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9766-2216 |
| authorships[4].author.display_name | Peter T. Cummings |
| authorships[4].countries | GB, US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1826, United States |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I32062511 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, U.K. |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I200719446 |
| authorships[4].affiliations[2].raw_affiliation_string | Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States |
| authorships[4].institutions[0].id | https://openalex.org/I32062511 |
| authorships[4].institutions[0].ror | https://ror.org/04mghma93 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I32062511 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Heriot-Watt University |
| authorships[4].institutions[1].id | https://openalex.org/I200719446 |
| authorships[4].institutions[1].ror | https://ror.org/02vm5rt34 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I200719446 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Vanderbilt University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Peter T. Cummings |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1826, United States, Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, U.K. |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.3c07304 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | E(n) Equivariant Graph Neural Network for Learning Interactional Properties of Molecules |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W4238897586, https://openalex.org/W435179959, https://openalex.org/W2619091065, https://openalex.org/W2059640416, https://openalex.org/W1490753184, https://openalex.org/W2284465472, https://openalex.org/W2291782699, https://openalex.org/W1993948687, https://openalex.org/W2000169967, https://openalex.org/W2069360731 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1021/acs.jpcb.3c07304 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S185621672 |
| best_oa_location.source.issn | 1520-5207, 1520-6106 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1520-5207 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | The Journal of Physical Chemistry B |
| best_oa_location.source.host_organization | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_name | American Chemical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_lineage_names | American Chemical Society |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.3c07304 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Journal of Physical Chemistry B |
| best_oa_location.landing_page_url | https://doi.org/10.1021/acs.jpcb.3c07304 |
| primary_location.id | doi:10.1021/acs.jpcb.3c07304 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S185621672 |
| primary_location.source.issn | 1520-5207, 1520-6106 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1520-5207 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | The Journal of Physical Chemistry B |
| primary_location.source.host_organization | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_name | American Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_lineage_names | American Chemical Society |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.3c07304 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Journal of Physical Chemistry B |
| primary_location.landing_page_url | https://doi.org/10.1021/acs.jpcb.3c07304 |
| publication_date | 2024-01-17 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2114704115, https://openalex.org/W2315837940, https://openalex.org/W4213374788, https://openalex.org/W2007698848, https://openalex.org/W2884430236, https://openalex.org/W4224988655, https://openalex.org/W2529996553, https://openalex.org/W2767147442, https://openalex.org/W3098530784, https://openalex.org/W3007309629, https://openalex.org/W1967671478, https://openalex.org/W2972341607, https://openalex.org/W2947945101, https://openalex.org/W4225405705, https://openalex.org/W4320814985, https://openalex.org/W2963396480, https://openalex.org/W4285076853, https://openalex.org/W2963175158, https://openalex.org/W2997848713, https://openalex.org/W1988037271, https://openalex.org/W1975147762, https://openalex.org/W3009321976, https://openalex.org/W2149851078, https://openalex.org/W3104592669, https://openalex.org/W2050658212, https://openalex.org/W2079628326, https://openalex.org/W1995007538, https://openalex.org/W3098279839, https://openalex.org/W2756203131, https://openalex.org/W2945591540, https://openalex.org/W2472797552, https://openalex.org/W2253581743, https://openalex.org/W3003571960, https://openalex.org/W2062085937, https://openalex.org/W2036780913, https://openalex.org/W1980079244, https://openalex.org/W1995874295, https://openalex.org/W2116667047, https://openalex.org/W2755626262, https://openalex.org/W3102794373, https://openalex.org/W3098269892, https://openalex.org/W3103720336, https://openalex.org/W3045928028 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 3, 128 |
| abstract_inverted_index.3D | 55 |
| abstract_inverted_index.By | 26 |
| abstract_inverted_index.To | 60, 96 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 104, 133 |
| abstract_inverted_index.be | 39 |
| abstract_inverted_index.in | 84 |
| abstract_inverted_index.is | 120, 146 |
| abstract_inverted_index.of | 14, 22, 57, 80, 100, 132, 167, 169 |
| abstract_inverted_index.on | 74, 109, 127 |
| abstract_inverted_index.to | 38, 41, 65, 154, 176 |
| abstract_inverted_index.we | 69 |
| abstract_inverted_index.The | 148 |
| abstract_inverted_index.and | 30, 87 |
| abstract_inverted_index.are | 82 |
| abstract_inverted_index.can | 50 |
| abstract_inverted_index.for | 11, 91, 114, 162 |
| abstract_inverted_index.set | 130 |
| abstract_inverted_index.six | 171 |
| abstract_inverted_index.the | 12, 20, 32, 44, 54, 62, 71, 98, 110, 124, 156, 163, 170 |
| abstract_inverted_index.two | 79 |
| abstract_inverted_index.was | 152 |
| abstract_inverted_index.(the | 137 |
| abstract_inverted_index.also | 121 |
| abstract_inverted_index.data | 77, 102, 106, 118, 129, 172 |
| abstract_inverted_index.four | 168 |
| abstract_inverted_index.from | 19, 35, 53 |
| abstract_inverted_index.have | 1, 155 |
| abstract_inverted_index.made | 88 |
| abstract_inverted_index.mean | 158 |
| abstract_inverted_index.sets | 173 |
| abstract_inverted_index.that | 17 |
| abstract_inverted_index.this | 85 |
| abstract_inverted_index.when | 174 |
| abstract_inverted_index.with | 143 |
| abstract_inverted_index.IEGNN | 149 |
| abstract_inverted_index.based | 108 |
| abstract_inverted_index.batch | 115 |
| abstract_inverted_index.error | 161 |
| abstract_inverted_index.found | 153 |
| abstract_inverted_index.graph | 7, 46 |
| abstract_inverted_index.learn | 52, 66 |
| abstract_inverted_index.model | 9, 94, 150 |
| abstract_inverted_index.sets, | 78, 103 |
| abstract_inverted_index.study | 86 |
| abstract_inverted_index.these | 36, 101 |
| abstract_inverted_index.three | 75 |
| abstract_inverted_index.which | 81 |
| abstract_inverted_index.enable | 97 |
| abstract_inverted_index.future | 92 |
| abstract_inverted_index.lowest | 157 |
| abstract_inverted_index.neural | 47 |
| abstract_inverted_index.points | 119 |
| abstract_inverted_index.result | 18 |
| abstract_inverted_index.tested | 70 |
| abstract_inverted_index.verify | 61 |
| abstract_inverted_index.(IEGNN) | 49 |
| abstract_inverted_index.IEGNN's | 63, 125 |
| abstract_inverted_index.PyTorch | 111 |
| abstract_inverted_index.between | 141 |
| abstract_inverted_index.curated | 83 |
| abstract_inverted_index.learned | 34 |
| abstract_inverted_index.library | 113 |
| abstract_inverted_index.loading | 99, 116 |
| abstract_inverted_index.model's | 72 |
| abstract_inverted_index.network | 48 |
| abstract_inverted_index.percent | 160 |
| abstract_inverted_index.spatial | 28 |
| abstract_inverted_index.unknown | 134 |
| abstract_inverted_index.Finally, | 123 |
| abstract_inverted_index.absolute | 159 |
| abstract_inverted_index.chemical | 15 |
| abstract_inverted_index.compared | 175 |
| abstract_inverted_index.created. | 122 |
| abstract_inverted_index.designed | 10 |
| abstract_inverted_index.features | 29, 37 |
| abstract_inverted_index.methods. | 178 |
| abstract_inverted_index.multiple | 58 |
| abstract_inverted_index.previous | 177 |
| abstract_inverted_index.publicly | 89 |
| abstract_inverted_index.variable | 144 |
| abstract_inverted_index.Geometric | 112 |
| abstract_inverted_index.available | 90 |
| abstract_inverted_index.developed | 2, 151 |
| abstract_inverted_index.examined. | 147 |
| abstract_inverted_index.functions | 33 |
| abstract_inverted_index.molecular | 24, 76 |
| abstract_inverted_index.predicted | 164 |
| abstract_inverted_index.resulting | 140 |
| abstract_inverted_index.structure | 56, 107 |
| abstract_inverted_index.capability | 64 |
| abstract_inverted_index.consisting | 131 |
| abstract_inverted_index.frictional | 138 |
| abstract_inverted_index.molecules. | 59 |
| abstract_inverted_index.monolayers | 142 |
| abstract_inverted_index.multigraph | 117 |
| abstract_inverted_index.prediction | 13 |
| abstract_inverted_index.properties | 16, 139, 166 |
| abstract_inverted_index.E(<i>n</i>) | 5, 42 |
| abstract_inverted_index.efficiently | 51 |
| abstract_inverted_index.equivariant | 6, 40 |
| abstract_inverted_index.interaction | 21 |
| abstract_inverted_index.multi-input | 4 |
| abstract_inverted_index.open-source | 105 |
| abstract_inverted_index.performance | 73, 126 |
| abstract_inverted_index.properties, | 68 |
| abstract_inverted_index.structures. | 25 |
| abstract_inverted_index.symmetries, | 43 |
| abstract_inverted_index.composition) | 145 |
| abstract_inverted_index.constraining | 31 |
| abstract_inverted_index.relationship | 136 |
| abstract_inverted_index.tribological | 165 |
| abstract_inverted_index.benchmarking. | 95 |
| abstract_inverted_index.heterogeneous | 23 |
| abstract_inverted_index.incorporating | 27 |
| abstract_inverted_index.interactional | 67, 93, 135 |
| abstract_inverted_index.convolution-based | 8 |
| abstract_inverted_index.interactional-equivariant | 45 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5049584797 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I200719446, https://openalex.org/I32062511 |
| citation_normalized_percentile.value | 0.86015503 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |