ElecBench: a Power Dispatch Evaluation Benchmark for Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.05365
In response to the urgent demand for grid stability and the complex challenges posed by renewable energy integration and electricity market dynamics, the power sector increasingly seeks innovative technological solutions. In this context, large language models (LLMs) have become a key technology to improve efficiency and promote intelligent progress in the power sector with their excellent natural language processing, logical reasoning, and generalization capabilities. Despite their potential, the absence of a performance evaluation benchmark for LLM in the power sector has limited the effective application of these technologies. Addressing this gap, our study introduces "ElecBench", an evaluation benchmark of LLMs within the power sector. ElecBench aims to overcome the shortcomings of existing evaluation benchmarks by providing comprehensive coverage of sector-specific scenarios, deepening the testing of professional knowledge, and enhancing decision-making precision. The framework categorizes scenarios into general knowledge and professional business, further divided into six core performance metrics: factuality, logicality, stability, security, fairness, and expressiveness, and is subdivided into 24 sub-metrics, offering profound insights into the capabilities and limitations of LLM applications in the power sector. To ensure transparency, we have made the complete test set public, evaluating the performance of eight LLMs across various scenarios and metrics. ElecBench aspires to serve as the standard benchmark for LLM applications in the power sector, supporting continuous updates of scenarios, metrics, and models to drive technological progress and application.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.05365
- https://arxiv.org/pdf/2407.05365
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400480476
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400480476Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.05365Digital Object Identifier
- Title
-
ElecBench: a Power Dispatch Evaluation Benchmark for Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-07Full publication date if available
- Authors
-
Xiyuan Zhou, Huan Zhao, Yuheng Cheng, Yuji Cao, Gaoqi Liang, Guolong Liu, Junhua ZhaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.05365Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.05365Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.05365Direct OA link when available
- Concepts
-
Benchmark (surveying), Computer science, Power (physics), Geography, Quantum mechanics, Physics, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400480476 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.05365 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.05365 |
| ids.openalex | https://openalex.org/W4400480476 |
| fwci | |
| type | preprint |
| title | ElecBench: a Power Dispatch Evaluation Benchmark for Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7839999794960022 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185798385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8285719156265259 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[0].display_name | Benchmark (surveying) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5548238158226013 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C163258240 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5018215179443359 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[2].display_name | Power (physics) |
| concepts[3].id | https://openalex.org/C205649164 |
| concepts[3].level | 0 |
| concepts[3].score | 0.10545390844345093 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[3].display_name | Geography |
| concepts[4].id | https://openalex.org/C62520636 |
| concepts[4].level | 1 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[4].display_name | Quantum mechanics |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C13280743 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[6].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/benchmark |
| keywords[0].score | 0.8285719156265259 |
| keywords[0].display_name | Benchmark (surveying) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5548238158226013 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/power |
| keywords[2].score | 0.5018215179443359 |
| keywords[2].display_name | Power (physics) |
| keywords[3].id | https://openalex.org/keywords/geography |
| keywords[3].score | 0.10545390844345093 |
| keywords[3].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.05365 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.05365 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.05365 |
| locations[1].id | doi:10.48550/arxiv.2407.05365 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.05365 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102803874 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0858-5456 |
| authorships[0].author.display_name | Xiyuan Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhou, Xiyuan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5011902043 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3133-3137 |
| authorships[1].author.display_name | Huan Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Huan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5113092680 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yuheng Cheng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cheng, Yuheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5051703324 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8664-0823 |
| authorships[3].author.display_name | Yuji Cao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cao, Yuji |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5090253720 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9060-1675 |
| authorships[4].author.display_name | Gaoqi Liang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liang, Gaoqi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101462397 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3726-4216 |
| authorships[5].author.display_name | Guolong Liu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liu, Guolong |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5065487554 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5446-2655 |
| authorships[6].author.display_name | Junhua Zhao |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zhao, Junhua |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.05365 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-07-10T00:00:00 |
| display_name | ElecBench: a Power Dispatch Evaluation Benchmark for Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7839999794960022 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W972276598, https://openalex.org/W2087343574 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.05365 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.05365 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.05365 |
| primary_location.id | pmh:oai:arXiv.org:2407.05365 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.05365 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.05365 |
| publication_date | 2024-07-07 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 39, 70 |
| abstract_inverted_index.24 | 159 |
| abstract_inverted_index.In | 0, 30 |
| abstract_inverted_index.To | 176 |
| abstract_inverted_index.an | 95 |
| abstract_inverted_index.as | 202 |
| abstract_inverted_index.by | 14, 114 |
| abstract_inverted_index.in | 49, 76, 172, 209 |
| abstract_inverted_index.is | 156 |
| abstract_inverted_index.of | 69, 85, 98, 110, 118, 124, 169, 190, 216 |
| abstract_inverted_index.to | 2, 42, 106, 200, 221 |
| abstract_inverted_index.we | 179 |
| abstract_inverted_index.LLM | 75, 170, 207 |
| abstract_inverted_index.The | 131 |
| abstract_inverted_index.and | 9, 18, 45, 61, 127, 138, 153, 155, 167, 196, 219, 225 |
| abstract_inverted_index.for | 6, 74, 206 |
| abstract_inverted_index.has | 80 |
| abstract_inverted_index.key | 40 |
| abstract_inverted_index.our | 91 |
| abstract_inverted_index.set | 185 |
| abstract_inverted_index.six | 144 |
| abstract_inverted_index.the | 3, 10, 22, 50, 67, 77, 82, 101, 108, 122, 165, 173, 182, 188, 203, 210 |
| abstract_inverted_index.LLMs | 99, 192 |
| abstract_inverted_index.aims | 105 |
| abstract_inverted_index.core | 145 |
| abstract_inverted_index.gap, | 90 |
| abstract_inverted_index.grid | 7 |
| abstract_inverted_index.have | 37, 180 |
| abstract_inverted_index.into | 135, 143, 158, 164 |
| abstract_inverted_index.made | 181 |
| abstract_inverted_index.test | 184 |
| abstract_inverted_index.this | 31, 89 |
| abstract_inverted_index.with | 53 |
| abstract_inverted_index.drive | 222 |
| abstract_inverted_index.eight | 191 |
| abstract_inverted_index.large | 33 |
| abstract_inverted_index.posed | 13 |
| abstract_inverted_index.power | 23, 51, 78, 102, 174, 211 |
| abstract_inverted_index.seeks | 26 |
| abstract_inverted_index.serve | 201 |
| abstract_inverted_index.study | 92 |
| abstract_inverted_index.their | 54, 65 |
| abstract_inverted_index.these | 86 |
| abstract_inverted_index.(LLMs) | 36 |
| abstract_inverted_index.across | 193 |
| abstract_inverted_index.become | 38 |
| abstract_inverted_index.demand | 5 |
| abstract_inverted_index.energy | 16 |
| abstract_inverted_index.ensure | 177 |
| abstract_inverted_index.market | 20 |
| abstract_inverted_index.models | 35, 220 |
| abstract_inverted_index.sector | 24, 52, 79 |
| abstract_inverted_index.urgent | 4 |
| abstract_inverted_index.within | 100 |
| abstract_inverted_index.Despite | 64 |
| abstract_inverted_index.absence | 68 |
| abstract_inverted_index.aspires | 199 |
| abstract_inverted_index.complex | 11 |
| abstract_inverted_index.divided | 142 |
| abstract_inverted_index.further | 141 |
| abstract_inverted_index.general | 136 |
| abstract_inverted_index.improve | 43 |
| abstract_inverted_index.limited | 81 |
| abstract_inverted_index.logical | 59 |
| abstract_inverted_index.natural | 56 |
| abstract_inverted_index.promote | 46 |
| abstract_inverted_index.public, | 186 |
| abstract_inverted_index.sector, | 212 |
| abstract_inverted_index.sector. | 103, 175 |
| abstract_inverted_index.testing | 123 |
| abstract_inverted_index.updates | 215 |
| abstract_inverted_index.various | 194 |
| abstract_inverted_index.complete | 183 |
| abstract_inverted_index.context, | 32 |
| abstract_inverted_index.coverage | 117 |
| abstract_inverted_index.existing | 111 |
| abstract_inverted_index.insights | 163 |
| abstract_inverted_index.language | 34, 57 |
| abstract_inverted_index.metrics, | 218 |
| abstract_inverted_index.metrics. | 197 |
| abstract_inverted_index.metrics: | 147 |
| abstract_inverted_index.offering | 161 |
| abstract_inverted_index.overcome | 107 |
| abstract_inverted_index.profound | 162 |
| abstract_inverted_index.progress | 48, 224 |
| abstract_inverted_index.response | 1 |
| abstract_inverted_index.standard | 204 |
| abstract_inverted_index.ElecBench | 104, 198 |
| abstract_inverted_index.benchmark | 73, 97, 205 |
| abstract_inverted_index.business, | 140 |
| abstract_inverted_index.deepening | 121 |
| abstract_inverted_index.dynamics, | 21 |
| abstract_inverted_index.effective | 83 |
| abstract_inverted_index.enhancing | 128 |
| abstract_inverted_index.excellent | 55 |
| abstract_inverted_index.fairness, | 152 |
| abstract_inverted_index.framework | 132 |
| abstract_inverted_index.knowledge | 137 |
| abstract_inverted_index.providing | 115 |
| abstract_inverted_index.renewable | 15 |
| abstract_inverted_index.scenarios | 134, 195 |
| abstract_inverted_index.security, | 151 |
| abstract_inverted_index.stability | 8 |
| abstract_inverted_index.Addressing | 88 |
| abstract_inverted_index.benchmarks | 113 |
| abstract_inverted_index.challenges | 12 |
| abstract_inverted_index.continuous | 214 |
| abstract_inverted_index.efficiency | 44 |
| abstract_inverted_index.evaluating | 187 |
| abstract_inverted_index.evaluation | 72, 96, 112 |
| abstract_inverted_index.innovative | 27 |
| abstract_inverted_index.introduces | 93 |
| abstract_inverted_index.knowledge, | 126 |
| abstract_inverted_index.potential, | 66 |
| abstract_inverted_index.precision. | 130 |
| abstract_inverted_index.reasoning, | 60 |
| abstract_inverted_index.scenarios, | 120, 217 |
| abstract_inverted_index.solutions. | 29 |
| abstract_inverted_index.stability, | 150 |
| abstract_inverted_index.subdivided | 157 |
| abstract_inverted_index.supporting | 213 |
| abstract_inverted_index.technology | 41 |
| abstract_inverted_index.application | 84 |
| abstract_inverted_index.categorizes | 133 |
| abstract_inverted_index.electricity | 19 |
| abstract_inverted_index.factuality, | 148 |
| abstract_inverted_index.integration | 17 |
| abstract_inverted_index.intelligent | 47 |
| abstract_inverted_index.limitations | 168 |
| abstract_inverted_index.logicality, | 149 |
| abstract_inverted_index.performance | 71, 146, 189 |
| abstract_inverted_index.processing, | 58 |
| abstract_inverted_index."ElecBench", | 94 |
| abstract_inverted_index.application. | 226 |
| abstract_inverted_index.applications | 171, 208 |
| abstract_inverted_index.capabilities | 166 |
| abstract_inverted_index.increasingly | 25 |
| abstract_inverted_index.professional | 125, 139 |
| abstract_inverted_index.shortcomings | 109 |
| abstract_inverted_index.sub-metrics, | 160 |
| abstract_inverted_index.capabilities. | 63 |
| abstract_inverted_index.comprehensive | 116 |
| abstract_inverted_index.technological | 28, 223 |
| abstract_inverted_index.technologies. | 87 |
| abstract_inverted_index.transparency, | 178 |
| abstract_inverted_index.generalization | 62 |
| abstract_inverted_index.decision-making | 129 |
| abstract_inverted_index.expressiveness, | 154 |
| abstract_inverted_index.sector-specific | 119 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |