Electrocardiogram sequences data analytics and classification using unsupervised and supervised machine learning algorithms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.11591/ijai.v14.i3.pp2055-2071
This paper explores the prediction of cardiovascular disease (CVD) through the classification of electrocardiogram (ECG) sequences using both supervised and unsupervised machine learning (ML) algorithms. ECG 5000 dataset is considered to perform essential data analytics, clustering, and classification, effectively categorizing ECG heartbeats into optimal groups to forecast CVD. The Elbow and Silhouette methods are applied to estimate optimal number of clusters within the dataset. Using K-means and hierarchical clustering algorithms, the data is grouped into two and five distinguishable clusters, with performance metrics indicating that two clusters are more viable. Subsequently, multiple supervised ML classifiers—including kernel classifiers, support vector machine (SVM), naïve Bayes (NB), decision trees (DT), k-nearest neighbor (KNN) and neural networks (NN)—are trained on the labeled and clustered datasets to ensure accurate classification of ECG sequences and anomaly detection. A novel modified ML classifier, kernel-SVM with Chi-Square (χ²) feature selection, is introduced and demonstrates exceptional performance, achieving an impressive accuracy of 0.9848, recall of 0.9973, and a training time of 1.6944 seconds, surpassing benchmarks from prior research. The results and discussion section includes a comparison of various algorithm performances, affirming that the proposed approach is an alternative to the complex deep learning (DL) and transformer-based models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijai.v14.i3.pp2055-2071
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411094391
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411094391Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijai.v14.i3.pp2055-2071Digital Object Identifier
- Title
-
Electrocardiogram sequences data analytics and classification using unsupervised and supervised machine learning algorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-01Full publication date if available
- Authors
-
Sami Ghnimi, Pratapa Raju Moola, J. A. ShariffList of authors in order
- Landing page
-
https://doi.org/10.11591/ijai.v14.i3.pp2055-2071Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.11591/ijai.v14.i3.pp2055-2071Direct OA link when available
- Concepts
-
Computer science, Machine learning, Analytics, Artificial intelligence, Unsupervised learning, Data analysis, Learning analytics, Data mining, Algorithm, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411094391 |
|---|---|
| doi | https://doi.org/10.11591/ijai.v14.i3.pp2055-2071 |
| ids.doi | https://doi.org/10.11591/ijai.v14.i3.pp2055-2071 |
| ids.openalex | https://openalex.org/W4411094391 |
| fwci | 0.0 |
| type | article |
| title | Electrocardiogram sequences data analytics and classification using unsupervised and supervised machine learning algorithms |
| biblio.issue | 3 |
| biblio.volume | 14 |
| biblio.last_page | 2055 |
| biblio.first_page | 2055 |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.6865000128746033 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8665387630462646 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.616782546043396 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C79158427 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6109243631362915 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[2].display_name | Analytics |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5519055724143982 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C8038995 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5358598828315735 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[4].display_name | Unsupervised learning |
| concepts[5].id | https://openalex.org/C175801342 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45856890082359314 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1988917 |
| concepts[5].display_name | Data analysis |
| concepts[6].id | https://openalex.org/C2777648619 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43710795044898987 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2845208 |
| concepts[6].display_name | Learning analytics |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.40311747789382935 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.366064190864563 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3312302231788635 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8665387630462646 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.616782546043396 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/analytics |
| keywords[2].score | 0.6109243631362915 |
| keywords[2].display_name | Analytics |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5519055724143982 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[4].score | 0.5358598828315735 |
| keywords[4].display_name | Unsupervised learning |
| keywords[5].id | https://openalex.org/keywords/data-analysis |
| keywords[5].score | 0.45856890082359314 |
| keywords[5].display_name | Data analysis |
| keywords[6].id | https://openalex.org/keywords/learning-analytics |
| keywords[6].score | 0.43710795044898987 |
| keywords[6].display_name | Learning analytics |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.40311747789382935 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.366064190864563 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.3312302231788635 |
| keywords[9].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.11591/ijai.v14.i3.pp2055-2071 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764408626 |
| locations[0].source.issn | 2089-4872, 2252-8938 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2089-4872 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IAES International Journal of Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijai.v14.i3.pp2055-2071 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5117854836 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-5158-6437 |
| authorships[0].author.display_name | Sami Ghnimi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sami Ghnimi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5107293723 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6165-5823 |
| authorships[1].author.display_name | Pratapa Raju Moola |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pratapa Raju Moola |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5064915009 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | J. A. Shariff |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jamaludeen Abdul Shariff |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.11591/ijai.v14.i3.pp2055-2071 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Electrocardiogram sequences data analytics and classification using unsupervised and supervised machine learning algorithms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.6865000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W1987827786, https://openalex.org/W2799586942, https://openalex.org/W2504091800, https://openalex.org/W2331775400, https://openalex.org/W2816728186, https://openalex.org/W2804624249, https://openalex.org/W2560130217, https://openalex.org/W605203981, https://openalex.org/W4225313275, https://openalex.org/W3097749327 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijai.v14.i3.pp2055-2071 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764408626 |
| best_oa_location.source.issn | 2089-4872, 2252-8938 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2089-4872 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IAES International Journal of Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijai.v14.i3.pp2055-2071 |
| primary_location.id | doi:10.11591/ijai.v14.i3.pp2055-2071 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764408626 |
| primary_location.source.issn | 2089-4872, 2252-8938 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2089-4872 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IAES International Journal of Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijai.v14.i3.pp2055-2071 |
| publication_date | 2025-06-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 131 |
| abstract_inverted_index.a | 158, 175 |
| abstract_inverted_index.ML | 93, 134 |
| abstract_inverted_index.an | 149, 187 |
| abstract_inverted_index.is | 28, 72, 142, 186 |
| abstract_inverted_index.of | 5, 12, 59, 125, 152, 155, 161, 177 |
| abstract_inverted_index.on | 115 |
| abstract_inverted_index.to | 30, 45, 55, 121, 189 |
| abstract_inverted_index.ECG | 25, 40, 126 |
| abstract_inverted_index.The | 48, 169 |
| abstract_inverted_index.and | 19, 36, 50, 66, 76, 110, 118, 128, 144, 157, 171, 195 |
| abstract_inverted_index.are | 53, 87 |
| abstract_inverted_index.the | 3, 10, 62, 70, 116, 183, 190 |
| abstract_inverted_index.two | 75, 85 |
| abstract_inverted_index.(DL) | 194 |
| abstract_inverted_index.(ML) | 23 |
| abstract_inverted_index.5000 | 26 |
| abstract_inverted_index.CVD. | 47 |
| abstract_inverted_index.both | 17 |
| abstract_inverted_index.data | 33, 71 |
| abstract_inverted_index.deep | 192 |
| abstract_inverted_index.five | 77 |
| abstract_inverted_index.from | 166 |
| abstract_inverted_index.into | 42, 74 |
| abstract_inverted_index.more | 88 |
| abstract_inverted_index.that | 84, 182 |
| abstract_inverted_index.time | 160 |
| abstract_inverted_index.with | 80, 137 |
| abstract_inverted_index.(CVD) | 8 |
| abstract_inverted_index.(DT), | 106 |
| abstract_inverted_index.(ECG) | 14 |
| abstract_inverted_index.(KNN) | 109 |
| abstract_inverted_index.(NB), | 103 |
| abstract_inverted_index.Bayes | 102 |
| abstract_inverted_index.Elbow | 49 |
| abstract_inverted_index.Using | 64 |
| abstract_inverted_index.novel | 132 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.prior | 167 |
| abstract_inverted_index.trees | 105 |
| abstract_inverted_index.using | 16 |
| abstract_inverted_index.(SVM), | 100 |
| abstract_inverted_index.(χ²) | 139 |
| abstract_inverted_index.1.6944 | 162 |
| abstract_inverted_index.ensure | 122 |
| abstract_inverted_index.groups | 44 |
| abstract_inverted_index.kernel | 95 |
| abstract_inverted_index.naïve | 101 |
| abstract_inverted_index.neural | 111 |
| abstract_inverted_index.number | 58 |
| abstract_inverted_index.recall | 154 |
| abstract_inverted_index.vector | 98 |
| abstract_inverted_index.within | 61 |
| abstract_inverted_index.0.9848, | 153 |
| abstract_inverted_index.0.9973, | 156 |
| abstract_inverted_index.K-means | 65 |
| abstract_inverted_index.anomaly | 129 |
| abstract_inverted_index.applied | 54 |
| abstract_inverted_index.complex | 191 |
| abstract_inverted_index.dataset | 27 |
| abstract_inverted_index.disease | 7 |
| abstract_inverted_index.feature | 140 |
| abstract_inverted_index.grouped | 73 |
| abstract_inverted_index.labeled | 117 |
| abstract_inverted_index.machine | 21, 99 |
| abstract_inverted_index.methods | 52 |
| abstract_inverted_index.metrics | 82 |
| abstract_inverted_index.optimal | 43, 57 |
| abstract_inverted_index.perform | 31 |
| abstract_inverted_index.results | 170 |
| abstract_inverted_index.section | 173 |
| abstract_inverted_index.support | 97 |
| abstract_inverted_index.through | 9 |
| abstract_inverted_index.trained | 114 |
| abstract_inverted_index.various | 178 |
| abstract_inverted_index.viable. | 89 |
| abstract_inverted_index.accuracy | 151 |
| abstract_inverted_index.accurate | 123 |
| abstract_inverted_index.approach | 185 |
| abstract_inverted_index.clusters | 60, 86 |
| abstract_inverted_index.dataset. | 63 |
| abstract_inverted_index.datasets | 120 |
| abstract_inverted_index.decision | 104 |
| abstract_inverted_index.estimate | 56 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.forecast | 46 |
| abstract_inverted_index.includes | 174 |
| abstract_inverted_index.learning | 22, 193 |
| abstract_inverted_index.modified | 133 |
| abstract_inverted_index.multiple | 91 |
| abstract_inverted_index.neighbor | 108 |
| abstract_inverted_index.networks | 112 |
| abstract_inverted_index.proposed | 184 |
| abstract_inverted_index.seconds, | 163 |
| abstract_inverted_index.training | 159 |
| abstract_inverted_index.achieving | 148 |
| abstract_inverted_index.affirming | 181 |
| abstract_inverted_index.algorithm | 179 |
| abstract_inverted_index.clustered | 119 |
| abstract_inverted_index.clusters, | 79 |
| abstract_inverted_index.essential | 32 |
| abstract_inverted_index.k-nearest | 107 |
| abstract_inverted_index.research. | 168 |
| abstract_inverted_index.sequences | 15, 127 |
| abstract_inverted_index.(NN)—are | 113 |
| abstract_inverted_index.Chi-Square | 138 |
| abstract_inverted_index.Silhouette | 51 |
| abstract_inverted_index.analytics, | 34 |
| abstract_inverted_index.benchmarks | 165 |
| abstract_inverted_index.clustering | 68 |
| abstract_inverted_index.comparison | 176 |
| abstract_inverted_index.considered | 29 |
| abstract_inverted_index.detection. | 130 |
| abstract_inverted_index.discussion | 172 |
| abstract_inverted_index.heartbeats | 41 |
| abstract_inverted_index.impressive | 150 |
| abstract_inverted_index.indicating | 83 |
| abstract_inverted_index.introduced | 143 |
| abstract_inverted_index.kernel-SVM | 136 |
| abstract_inverted_index.prediction | 4 |
| abstract_inverted_index.selection, | 141 |
| abstract_inverted_index.supervised | 18, 92 |
| abstract_inverted_index.surpassing | 164 |
| abstract_inverted_index.algorithms, | 69 |
| abstract_inverted_index.algorithms. | 24 |
| abstract_inverted_index.alternative | 188 |
| abstract_inverted_index.classifier, | 135 |
| abstract_inverted_index.clustering, | 35 |
| abstract_inverted_index.effectively | 38 |
| abstract_inverted_index.exceptional | 146 |
| abstract_inverted_index.performance | 81 |
| abstract_inverted_index.categorizing | 39 |
| abstract_inverted_index.classifiers, | 96 |
| abstract_inverted_index.demonstrates | 145 |
| abstract_inverted_index.hierarchical | 67 |
| abstract_inverted_index.performance, | 147 |
| abstract_inverted_index.unsupervised | 20 |
| abstract_inverted_index.<p>This | 0 |
| abstract_inverted_index.Subsequently, | 90 |
| abstract_inverted_index.performances, | 180 |
| abstract_inverted_index.cardiovascular | 6 |
| abstract_inverted_index.classification | 11, 124 |
| abstract_inverted_index.classification, | 37 |
| abstract_inverted_index.distinguishable | 78 |
| abstract_inverted_index.electrocardiogram | 13 |
| abstract_inverted_index.models.</p> | 197 |
| abstract_inverted_index.transformer-based | 196 |
| abstract_inverted_index.classifiers—including | 94 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.34095136 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |