Electrostatic Force Regularization for Neural Structured Pruning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.11079
The demand for deploying deep convolutional neural networks (DCNNs) on resource-constrained devices for real-time applications remains substantial. However, existing state-of-the-art structured pruning methods often involve intricate implementations, require modifications to the original network architectures, and necessitate an extensive fine-tuning phase. To overcome these challenges, we propose a novel method that, for the first time, incorporates the concepts of charge and electrostatic force from physics into the training process of DCNNs. The magnitude of this force is directly proportional to the product of the charges of the convolution filter and the source filter, and inversely proportional to the square of the distance between them. We applied this electrostatic-like force to the convolution filters, either attracting filters with opposite charges toward non-zero weights or repelling filters with like charges toward zero weights. Consequently, filters subject to repulsive forces have their weights reduced to zero, enabling their removal, while the attractive forces preserve filters with significant weights that retain information. Unlike conventional methods, our approach is straightforward to implement, does not require any architectural modifications, and simultaneously optimizes weights and ranks filter importance, all without the need for extensive fine-tuning. We validated the efficacy of our method on modern DCNN architectures using the MNIST, CIFAR, and ImageNet datasets, achieving competitive performance compared to existing structured pruning approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.11079
- https://arxiv.org/pdf/2411.11079
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404570552
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404570552Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.11079Digital Object Identifier
- Title
-
Electrostatic Force Regularization for Neural Structured PruningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-17Full publication date if available
- Authors
-
Abdesselam Ferdi, Abdelmalik Taleb‐Ahmed, Amir Nakib, Youcef FerdiList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.11079Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.11079Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.11079Direct OA link when available
- Concepts
-
Regularization (linguistics), Pruning, Artificial neural network, Artificial intelligence, Computer science, Mathematics, Biological system, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404570552 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.11079 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.11079 |
| ids.openalex | https://openalex.org/W4404570552 |
| fwci | |
| type | preprint |
| title | Electrostatic Force Regularization for Neural Structured Pruning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9725000262260437 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776135515 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7458093762397766 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[0].display_name | Regularization (linguistics) |
| concepts[1].id | https://openalex.org/C108010975 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5233646631240845 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q500094 |
| concepts[1].display_name | Pruning |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4982593059539795 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3883359730243683 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3637027144432068 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.35630667209625244 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C186060115 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3348816931247711 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[6].display_name | Biological system |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.10526269674301147 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C59822182 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0829249918460846 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[8].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/regularization |
| keywords[0].score | 0.7458093762397766 |
| keywords[0].display_name | Regularization (linguistics) |
| keywords[1].id | https://openalex.org/keywords/pruning |
| keywords[1].score | 0.5233646631240845 |
| keywords[1].display_name | Pruning |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.4982593059539795 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3883359730243683 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3637027144432068 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.35630667209625244 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/biological-system |
| keywords[6].score | 0.3348816931247711 |
| keywords[6].display_name | Biological system |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.10526269674301147 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/botany |
| keywords[8].score | 0.0829249918460846 |
| keywords[8].display_name | Botany |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.11079 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.11079 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.11079 |
| locations[1].id | doi:10.48550/arxiv.2411.11079 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.11079 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001643572 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7248-752X |
| authorships[0].author.display_name | Abdesselam Ferdi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ferdi, Abdesselam |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5088214859 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7218-3799 |
| authorships[1].author.display_name | Abdelmalik Taleb‐Ahmed |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Taleb-Ahmed, Abdelmalik |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067068847 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9620-9324 |
| authorships[2].author.display_name | Amir Nakib |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nakib, Amir |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5060425191 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8039-9821 |
| authorships[3].author.display_name | Youcef Ferdi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ferdi, Youcef |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.11079 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Electrostatic Force Regularization for Neural Structured Pruning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9725000262260437 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2373300491, https://openalex.org/W2395294869, https://openalex.org/W2378744544, https://openalex.org/W2594301978, https://openalex.org/W2379704676, https://openalex.org/W1998810860, https://openalex.org/W4206442282, https://openalex.org/W2384505857, https://openalex.org/W2355171581, https://openalex.org/W1985010875 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.11079 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.11079 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.11079 |
| primary_location.id | pmh:oai:arXiv.org:2411.11079 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.11079 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.11079 |
| publication_date | 2024-11-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 46 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.We | 103, 187 |
| abstract_inverted_index.an | 36 |
| abstract_inverted_index.is | 75, 162 |
| abstract_inverted_index.of | 57, 68, 72, 81, 84, 98, 191 |
| abstract_inverted_index.on | 9, 194 |
| abstract_inverted_index.or | 121 |
| abstract_inverted_index.to | 29, 78, 95, 108, 133, 140, 164, 209 |
| abstract_inverted_index.we | 44 |
| abstract_inverted_index.The | 0, 70 |
| abstract_inverted_index.all | 180 |
| abstract_inverted_index.and | 34, 59, 88, 92, 172, 176, 202 |
| abstract_inverted_index.any | 169 |
| abstract_inverted_index.for | 2, 12, 50, 184 |
| abstract_inverted_index.not | 167 |
| abstract_inverted_index.our | 160, 192 |
| abstract_inverted_index.the | 30, 51, 55, 65, 79, 82, 85, 89, 96, 99, 109, 146, 182, 189, 199 |
| abstract_inverted_index.DCNN | 196 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.does | 166 |
| abstract_inverted_index.from | 62 |
| abstract_inverted_index.have | 136 |
| abstract_inverted_index.into | 64 |
| abstract_inverted_index.like | 125 |
| abstract_inverted_index.need | 183 |
| abstract_inverted_index.that | 154 |
| abstract_inverted_index.this | 73, 105 |
| abstract_inverted_index.with | 115, 124, 151 |
| abstract_inverted_index.zero | 128 |
| abstract_inverted_index.first | 52 |
| abstract_inverted_index.force | 61, 74, 107 |
| abstract_inverted_index.novel | 47 |
| abstract_inverted_index.often | 23 |
| abstract_inverted_index.ranks | 177 |
| abstract_inverted_index.that, | 49 |
| abstract_inverted_index.their | 137, 143 |
| abstract_inverted_index.them. | 102 |
| abstract_inverted_index.these | 42 |
| abstract_inverted_index.time, | 53 |
| abstract_inverted_index.using | 198 |
| abstract_inverted_index.while | 145 |
| abstract_inverted_index.zero, | 141 |
| abstract_inverted_index.CIFAR, | 201 |
| abstract_inverted_index.DCNNs. | 69 |
| abstract_inverted_index.MNIST, | 200 |
| abstract_inverted_index.Unlike | 157 |
| abstract_inverted_index.charge | 58 |
| abstract_inverted_index.demand | 1 |
| abstract_inverted_index.either | 112 |
| abstract_inverted_index.filter | 87, 178 |
| abstract_inverted_index.forces | 135, 148 |
| abstract_inverted_index.method | 48, 193 |
| abstract_inverted_index.modern | 195 |
| abstract_inverted_index.neural | 6 |
| abstract_inverted_index.phase. | 39 |
| abstract_inverted_index.retain | 155 |
| abstract_inverted_index.source | 90 |
| abstract_inverted_index.square | 97 |
| abstract_inverted_index.toward | 118, 127 |
| abstract_inverted_index.(DCNNs) | 8 |
| abstract_inverted_index.applied | 104 |
| abstract_inverted_index.between | 101 |
| abstract_inverted_index.charges | 83, 117, 126 |
| abstract_inverted_index.devices | 11 |
| abstract_inverted_index.filter, | 91 |
| abstract_inverted_index.filters | 114, 123, 131, 150 |
| abstract_inverted_index.involve | 24 |
| abstract_inverted_index.methods | 22 |
| abstract_inverted_index.network | 32 |
| abstract_inverted_index.physics | 63 |
| abstract_inverted_index.process | 67 |
| abstract_inverted_index.product | 80 |
| abstract_inverted_index.propose | 45 |
| abstract_inverted_index.pruning | 21, 212 |
| abstract_inverted_index.reduced | 139 |
| abstract_inverted_index.remains | 15 |
| abstract_inverted_index.require | 27, 168 |
| abstract_inverted_index.subject | 132 |
| abstract_inverted_index.weights | 120, 138, 153, 175 |
| abstract_inverted_index.without | 181 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.ImageNet | 203 |
| abstract_inverted_index.approach | 161 |
| abstract_inverted_index.compared | 208 |
| abstract_inverted_index.concepts | 56 |
| abstract_inverted_index.directly | 76 |
| abstract_inverted_index.distance | 100 |
| abstract_inverted_index.efficacy | 190 |
| abstract_inverted_index.enabling | 142 |
| abstract_inverted_index.existing | 18, 210 |
| abstract_inverted_index.filters, | 111 |
| abstract_inverted_index.methods, | 159 |
| abstract_inverted_index.networks | 7 |
| abstract_inverted_index.non-zero | 119 |
| abstract_inverted_index.opposite | 116 |
| abstract_inverted_index.original | 31 |
| abstract_inverted_index.overcome | 41 |
| abstract_inverted_index.preserve | 149 |
| abstract_inverted_index.removal, | 144 |
| abstract_inverted_index.training | 66 |
| abstract_inverted_index.weights. | 129 |
| abstract_inverted_index.achieving | 205 |
| abstract_inverted_index.datasets, | 204 |
| abstract_inverted_index.deploying | 3 |
| abstract_inverted_index.extensive | 37, 185 |
| abstract_inverted_index.intricate | 25 |
| abstract_inverted_index.inversely | 93 |
| abstract_inverted_index.magnitude | 71 |
| abstract_inverted_index.optimizes | 174 |
| abstract_inverted_index.real-time | 13 |
| abstract_inverted_index.repelling | 122 |
| abstract_inverted_index.repulsive | 134 |
| abstract_inverted_index.validated | 188 |
| abstract_inverted_index.attracting | 113 |
| abstract_inverted_index.attractive | 147 |
| abstract_inverted_index.implement, | 165 |
| abstract_inverted_index.structured | 20, 211 |
| abstract_inverted_index.approaches. | 213 |
| abstract_inverted_index.challenges, | 43 |
| abstract_inverted_index.competitive | 206 |
| abstract_inverted_index.convolution | 86, 110 |
| abstract_inverted_index.fine-tuning | 38 |
| abstract_inverted_index.importance, | 179 |
| abstract_inverted_index.necessitate | 35 |
| abstract_inverted_index.performance | 207 |
| abstract_inverted_index.significant | 152 |
| abstract_inverted_index.applications | 14 |
| abstract_inverted_index.conventional | 158 |
| abstract_inverted_index.fine-tuning. | 186 |
| abstract_inverted_index.incorporates | 54 |
| abstract_inverted_index.information. | 156 |
| abstract_inverted_index.proportional | 77, 94 |
| abstract_inverted_index.substantial. | 16 |
| abstract_inverted_index.Consequently, | 130 |
| abstract_inverted_index.architectural | 170 |
| abstract_inverted_index.architectures | 197 |
| abstract_inverted_index.convolutional | 5 |
| abstract_inverted_index.electrostatic | 60 |
| abstract_inverted_index.modifications | 28 |
| abstract_inverted_index.architectures, | 33 |
| abstract_inverted_index.modifications, | 171 |
| abstract_inverted_index.simultaneously | 173 |
| abstract_inverted_index.straightforward | 163 |
| abstract_inverted_index.implementations, | 26 |
| abstract_inverted_index.state-of-the-art | 19 |
| abstract_inverted_index.electrostatic-like | 106 |
| abstract_inverted_index.resource-constrained | 10 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |