Eliminating Gradient Conflict in Reference-based Line-Art Colorization Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2207.06095
Reference-based line-art colorization is a challenging task in computer vision. The color, texture, and shading are rendered based on an abstract sketch, which heavily relies on the precise long-range dependency modeling between the sketch and reference. Popular techniques to bridge the cross-modal information and model the long-range dependency employ the attention mechanism. However, in the context of reference-based line-art colorization, several techniques would intensify the existing training difficulty of attention, for instance, self-supervised training protocol and GAN-based losses. To understand the instability in training, we detect the gradient flow of attention and observe gradient conflict among attention branches. This phenomenon motivates us to alleviate the gradient issue by preserving the dominant gradient branch while removing the conflict ones. We propose a novel attention mechanism using this training strategy, Stop-Gradient Attention (SGA), outperforming the attention baseline by a large margin with better training stability. Compared with state-of-the-art modules in line-art colorization, our approach demonstrates significant improvements in Fréchet Inception Distance (FID, up to 27.21%) and structural similarity index measure (SSIM, up to 25.67%) on several benchmarks. The code of SGA is available at https://github.com/kunkun0w0/SGA .
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2207.06095
- https://arxiv.org/pdf/2207.06095
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4285483461
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4285483461Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2207.06095Digital Object Identifier
- Title
-
Eliminating Gradient Conflict in Reference-based Line-Art ColorizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-13Full publication date if available
- Authors
-
Zekun Li, Zhengyang Geng, Kang Zhao, Wenyu Chen, Yibo YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2207.06095Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2207.06095Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2207.06095Direct OA link when available
- Concepts
-
Computer science, Sketch, Artificial intelligence, Context (archaeology), Similarity (geometry), Dependency (UML), Line (geometry), Range (aeronautics), Task (project management), Margin (machine learning), Computer vision, Pattern recognition (psychology), Image (mathematics), Machine learning, Algorithm, Mathematics, Management, Geometry, Economics, Biology, Materials science, Paleontology, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4285483461 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2207.06095 |
| ids.doi | https://doi.org/10.48550/arxiv.2207.06095 |
| ids.openalex | https://openalex.org/W4285483461 |
| fwci | |
| type | preprint |
| title | Eliminating Gradient Conflict in Reference-based Line-Art Colorization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.982699990272522 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T11019 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9243000149726868 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Enhancement Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7931402325630188 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779231336 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6895971894264221 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7534724 |
| concepts[1].display_name | Sketch |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5932052135467529 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2779343474 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5181716680526733 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[3].display_name | Context (archaeology) |
| concepts[4].id | https://openalex.org/C103278499 |
| concepts[4].level | 3 |
| concepts[4].score | 0.49750497937202454 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[4].display_name | Similarity (geometry) |
| concepts[5].id | https://openalex.org/C19768560 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4952181875705719 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q320727 |
| concepts[5].display_name | Dependency (UML) |
| concepts[6].id | https://openalex.org/C198352243 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4566281735897064 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q37105 |
| concepts[6].display_name | Line (geometry) |
| concepts[7].id | https://openalex.org/C204323151 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44373977184295654 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[7].display_name | Range (aeronautics) |
| concepts[8].id | https://openalex.org/C2780451532 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4425400495529175 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[8].display_name | Task (project management) |
| concepts[9].id | https://openalex.org/C774472 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4212483763694763 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6760393 |
| concepts[9].display_name | Margin (machine learning) |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.347167432308197 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3311108946800232 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3007064461708069 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2605000436306 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.17844626307487488 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1108962893486023 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C187736073 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[16].display_name | Management |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C192562407 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[20].display_name | Materials science |
| concepts[21].id | https://openalex.org/C151730666 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[21].display_name | Paleontology |
| concepts[22].id | https://openalex.org/C159985019 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[22].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7931402325630188 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/sketch |
| keywords[1].score | 0.6895971894264221 |
| keywords[1].display_name | Sketch |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5932052135467529 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/context |
| keywords[3].score | 0.5181716680526733 |
| keywords[3].display_name | Context (archaeology) |
| keywords[4].id | https://openalex.org/keywords/similarity |
| keywords[4].score | 0.49750497937202454 |
| keywords[4].display_name | Similarity (geometry) |
| keywords[5].id | https://openalex.org/keywords/dependency |
| keywords[5].score | 0.4952181875705719 |
| keywords[5].display_name | Dependency (UML) |
| keywords[6].id | https://openalex.org/keywords/line |
| keywords[6].score | 0.4566281735897064 |
| keywords[6].display_name | Line (geometry) |
| keywords[7].id | https://openalex.org/keywords/range |
| keywords[7].score | 0.44373977184295654 |
| keywords[7].display_name | Range (aeronautics) |
| keywords[8].id | https://openalex.org/keywords/task |
| keywords[8].score | 0.4425400495529175 |
| keywords[8].display_name | Task (project management) |
| keywords[9].id | https://openalex.org/keywords/margin |
| keywords[9].score | 0.4212483763694763 |
| keywords[9].display_name | Margin (machine learning) |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.347167432308197 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3311108946800232 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.3007064461708069 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.2605000436306 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.17844626307487488 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.1108962893486023 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2207.06095 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2207.06095 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2207.06095 |
| locations[1].id | doi:10.48550/arxiv.2207.06095 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2207.06095 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100607162 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0590-8873 |
| authorships[0].author.display_name | Zekun Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Zekun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102893697 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-9903-2716 |
| authorships[1].author.display_name | Zhengyang Geng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Geng, Zhengyang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100731707 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5373-6308 |
| authorships[2].author.display_name | Kang Zhao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kang, Zhao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100687323 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9933-8014 |
| authorships[3].author.display_name | Wenyu Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Wenyu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5103072699 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0530-7231 |
| authorships[4].author.display_name | Yibo Yang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yang, Yibo |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2207.06095 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Eliminating Gradient Conflict in Reference-based Line-Art Colorization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.982699990272522 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W2378994405, https://openalex.org/W2385974820, https://openalex.org/W2373478030, https://openalex.org/W2378679551, https://openalex.org/W3149739944, https://openalex.org/W2392363776, https://openalex.org/W2063051341, https://openalex.org/W2591066345, https://openalex.org/W1494563618, https://openalex.org/W2357022711 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2207.06095 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2207.06095 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2207.06095 |
| primary_location.id | pmh:oai:arXiv.org:2207.06095 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2207.06095 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2207.06095 |
| publication_date | 2022-07-13 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.. | 183 |
| abstract_inverted_index.a | 4, 120, 136 |
| abstract_inverted_index.To | 78 |
| abstract_inverted_index.We | 118 |
| abstract_inverted_index.an | 19 |
| abstract_inverted_index.at | 181 |
| abstract_inverted_index.by | 107, 135 |
| abstract_inverted_index.in | 7, 53, 82, 147, 155 |
| abstract_inverted_index.is | 3, 179 |
| abstract_inverted_index.of | 56, 68, 89, 177 |
| abstract_inverted_index.on | 18, 25, 172 |
| abstract_inverted_index.to | 38, 102, 161, 170 |
| abstract_inverted_index.up | 160, 169 |
| abstract_inverted_index.us | 101 |
| abstract_inverted_index.we | 84 |
| abstract_inverted_index.SGA | 178 |
| abstract_inverted_index.The | 10, 175 |
| abstract_inverted_index.and | 13, 34, 43, 75, 91, 163 |
| abstract_inverted_index.are | 15 |
| abstract_inverted_index.for | 70 |
| abstract_inverted_index.our | 150 |
| abstract_inverted_index.the | 26, 32, 40, 45, 49, 54, 64, 80, 86, 104, 109, 115, 132 |
| abstract_inverted_index.This | 98 |
| abstract_inverted_index.code | 176 |
| abstract_inverted_index.flow | 88 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.this | 125 |
| abstract_inverted_index.with | 139, 144 |
| abstract_inverted_index.(FID, | 159 |
| abstract_inverted_index.among | 95 |
| abstract_inverted_index.based | 17 |
| abstract_inverted_index.index | 166 |
| abstract_inverted_index.issue | 106 |
| abstract_inverted_index.large | 137 |
| abstract_inverted_index.model | 44 |
| abstract_inverted_index.novel | 121 |
| abstract_inverted_index.ones. | 117 |
| abstract_inverted_index.using | 124 |
| abstract_inverted_index.which | 22 |
| abstract_inverted_index.while | 113 |
| abstract_inverted_index.would | 62 |
| abstract_inverted_index.(SGA), | 130 |
| abstract_inverted_index.(SSIM, | 168 |
| abstract_inverted_index.better | 140 |
| abstract_inverted_index.branch | 112 |
| abstract_inverted_index.bridge | 39 |
| abstract_inverted_index.color, | 11 |
| abstract_inverted_index.detect | 85 |
| abstract_inverted_index.employ | 48 |
| abstract_inverted_index.margin | 138 |
| abstract_inverted_index.relies | 24 |
| abstract_inverted_index.sketch | 33 |
| abstract_inverted_index.25.67%) | 171 |
| abstract_inverted_index.27.21%) | 162 |
| abstract_inverted_index.Popular | 36 |
| abstract_inverted_index.between | 31 |
| abstract_inverted_index.context | 55 |
| abstract_inverted_index.heavily | 23 |
| abstract_inverted_index.losses. | 77 |
| abstract_inverted_index.measure | 167 |
| abstract_inverted_index.modules | 146 |
| abstract_inverted_index.observe | 92 |
| abstract_inverted_index.precise | 27 |
| abstract_inverted_index.propose | 119 |
| abstract_inverted_index.several | 60, 173 |
| abstract_inverted_index.shading | 14 |
| abstract_inverted_index.sketch, | 21 |
| abstract_inverted_index.vision. | 9 |
| abstract_inverted_index.Compared | 143 |
| abstract_inverted_index.Distance | 158 |
| abstract_inverted_index.Fréchet | 156 |
| abstract_inverted_index.However, | 52 |
| abstract_inverted_index.abstract | 20 |
| abstract_inverted_index.approach | 151 |
| abstract_inverted_index.baseline | 134 |
| abstract_inverted_index.computer | 8 |
| abstract_inverted_index.conflict | 94, 116 |
| abstract_inverted_index.dominant | 110 |
| abstract_inverted_index.existing | 65 |
| abstract_inverted_index.gradient | 87, 93, 105, 111 |
| abstract_inverted_index.line-art | 1, 58, 148 |
| abstract_inverted_index.modeling | 30 |
| abstract_inverted_index.protocol | 74 |
| abstract_inverted_index.removing | 114 |
| abstract_inverted_index.rendered | 16 |
| abstract_inverted_index.texture, | 12 |
| abstract_inverted_index.training | 66, 73, 126, 141 |
| abstract_inverted_index.Attention | 129 |
| abstract_inverted_index.GAN-based | 76 |
| abstract_inverted_index.Inception | 157 |
| abstract_inverted_index.alleviate | 103 |
| abstract_inverted_index.attention | 50, 90, 96, 122, 133 |
| abstract_inverted_index.available | 180 |
| abstract_inverted_index.branches. | 97 |
| abstract_inverted_index.instance, | 71 |
| abstract_inverted_index.intensify | 63 |
| abstract_inverted_index.mechanism | 123 |
| abstract_inverted_index.motivates | 100 |
| abstract_inverted_index.strategy, | 127 |
| abstract_inverted_index.training, | 83 |
| abstract_inverted_index.attention, | 69 |
| abstract_inverted_index.dependency | 29, 47 |
| abstract_inverted_index.difficulty | 67 |
| abstract_inverted_index.long-range | 28, 46 |
| abstract_inverted_index.mechanism. | 51 |
| abstract_inverted_index.phenomenon | 99 |
| abstract_inverted_index.preserving | 108 |
| abstract_inverted_index.reference. | 35 |
| abstract_inverted_index.similarity | 165 |
| abstract_inverted_index.stability. | 142 |
| abstract_inverted_index.structural | 164 |
| abstract_inverted_index.techniques | 37, 61 |
| abstract_inverted_index.understand | 79 |
| abstract_inverted_index.benchmarks. | 174 |
| abstract_inverted_index.challenging | 5 |
| abstract_inverted_index.cross-modal | 41 |
| abstract_inverted_index.information | 42 |
| abstract_inverted_index.instability | 81 |
| abstract_inverted_index.significant | 153 |
| abstract_inverted_index.colorization | 2 |
| abstract_inverted_index.demonstrates | 152 |
| abstract_inverted_index.improvements | 154 |
| abstract_inverted_index.Stop-Gradient | 128 |
| abstract_inverted_index.colorization, | 59, 149 |
| abstract_inverted_index.outperforming | 131 |
| abstract_inverted_index.Reference-based | 0 |
| abstract_inverted_index.reference-based | 57 |
| abstract_inverted_index.self-supervised | 72 |
| abstract_inverted_index.state-of-the-art | 145 |
| abstract_inverted_index.https://github.com/kunkun0w0/SGA | 182 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |