$\ell^2$ Inference for Change Points in High-Dimensional Time Series via a Two-Way MOSUM Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2208.13074
We propose an inference method for detecting multiple change points in high-dimensional time series, targeting dense or spatially clustered signals. Our method aggregates moving sum (MOSUM) statistics cross-sectionally by an $\ell^2$-norm and maximizes them over time. We further introduce a novel Two-Way MOSUM, which utilizes spatial-temporal moving regions to search for breaks, with the added advantage of enhancing testing power when breaks occur in only a few groups. The limiting distribution of an $\ell^2$-aggregated statistic is established for testing break existence by extending a high-dimensional Gaussian approximation theorem to spatial-temporal non-stationary processes. Simulation studies exhibit promising performance of our test in detecting non-sparse weak signals. Two applications, analyzing equity returns and COVID-19 cases in the United States, showcase the real-world relevance of our proposed algorithms.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2208.13074
- https://arxiv.org/pdf/2208.13074
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293790416
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293790416Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2208.13074Digital Object Identifier
- Title
-
$\ell^2$ Inference for Change Points in High-Dimensional Time Series via a Two-Way MOSUMWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-27Full publication date if available
- Authors
-
J. Jenny Li, Likai Chen, Ning Wang, Wei Biao WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2208.13074Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2208.13074Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2208.13074Direct OA link when available
- Concepts
-
Inference, Scan statistic, Series (stratigraphy), Algorithm, Statistic, Computer science, Test statistic, Gaussian, Mathematics, Statistical inference, Statistical hypothesis testing, Statistics, Artificial intelligence, Physics, Biology, Quantum mechanics, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293790416 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2208.13074 |
| ids.doi | https://doi.org/10.48550/arxiv.2208.13074 |
| ids.openalex | https://openalex.org/W4293790416 |
| fwci | |
| type | preprint |
| title | $\ell^2$ Inference for Change Points in High-Dimensional Time Series via a Two-Way MOSUM |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11443 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9732999801635742 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1804 |
| topics[0].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[0].display_name | Advanced Statistical Process Monitoring |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9672999978065491 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T11819 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9667999744415283 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Data-Driven Disease Surveillance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776214188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7499866485595703 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[0].display_name | Inference |
| concepts[1].id | https://openalex.org/C2781302328 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6853781938552856 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q16967898 |
| concepts[1].display_name | Scan statistic |
| concepts[2].id | https://openalex.org/C143724316 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5621809363365173 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[2].display_name | Series (stratigraphy) |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4932486414909363 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C89128539 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4692147970199585 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1949963 |
| concepts[4].display_name | Statistic |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4664665460586548 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C169857963 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4616128206253052 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1461038 |
| concepts[6].display_name | Test statistic |
| concepts[7].id | https://openalex.org/C163716315 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4377962648868561 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[7].display_name | Gaussian |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4171246886253357 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C134261354 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41292035579681396 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[9].display_name | Statistical inference |
| concepts[10].id | https://openalex.org/C87007009 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3809109926223755 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q210832 |
| concepts[10].display_name | Statistical hypothesis testing |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2211742103099823 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.19811007380485535 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.10796904563903809 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/inference |
| keywords[0].score | 0.7499866485595703 |
| keywords[0].display_name | Inference |
| keywords[1].id | https://openalex.org/keywords/scan-statistic |
| keywords[1].score | 0.6853781938552856 |
| keywords[1].display_name | Scan statistic |
| keywords[2].id | https://openalex.org/keywords/series |
| keywords[2].score | 0.5621809363365173 |
| keywords[2].display_name | Series (stratigraphy) |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.4932486414909363 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/statistic |
| keywords[4].score | 0.4692147970199585 |
| keywords[4].display_name | Statistic |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4664665460586548 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/test-statistic |
| keywords[6].score | 0.4616128206253052 |
| keywords[6].display_name | Test statistic |
| keywords[7].id | https://openalex.org/keywords/gaussian |
| keywords[7].score | 0.4377962648868561 |
| keywords[7].display_name | Gaussian |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4171246886253357 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/statistical-inference |
| keywords[9].score | 0.41292035579681396 |
| keywords[9].display_name | Statistical inference |
| keywords[10].id | https://openalex.org/keywords/statistical-hypothesis-testing |
| keywords[10].score | 0.3809109926223755 |
| keywords[10].display_name | Statistical hypothesis testing |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.2211742103099823 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.19811007380485535 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.10796904563903809 |
| keywords[13].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2208.13074 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2208.13074 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2208.13074 |
| locations[1].id | doi:10.48550/arxiv.2208.13074 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2208.13074 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5037457741 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-0597-0970 |
| authorships[0].author.display_name | J. Jenny Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Jiaqi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103166164 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4603-1676 |
| authorships[1].author.display_name | Likai Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Likai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058107332 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1745-1425 |
| authorships[2].author.display_name | Ning Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Weining |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5036683934 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4310-9965 |
| authorships[3].author.display_name | Wei Biao Wu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wu, Wei Biao |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2208.13074 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | $\ell^2$ Inference for Change Points in High-Dimensional Time Series via a Two-Way MOSUM |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11443 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9732999801635742 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1804 |
| primary_topic.subfield.display_name | Statistics, Probability and Uncertainty |
| primary_topic.display_name | Advanced Statistical Process Monitoring |
| related_works | https://openalex.org/W2388380318, https://openalex.org/W4835932, https://openalex.org/W1985369819, https://openalex.org/W2163922535, https://openalex.org/W9742383, https://openalex.org/W1986789204, https://openalex.org/W4231409346, https://openalex.org/W2027914660, https://openalex.org/W3015822731, https://openalex.org/W2957280400 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2208.13074 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2208.13074 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2208.13074 |
| primary_location.id | pmh:oai:arXiv.org:2208.13074 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2208.13074 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2208.13074 |
| publication_date | 2022-08-27 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 39, 65, 83 |
| abstract_inverted_index.We | 0, 36 |
| abstract_inverted_index.an | 2, 29, 72 |
| abstract_inverted_index.by | 28, 81 |
| abstract_inverted_index.in | 10, 63, 100, 113 |
| abstract_inverted_index.is | 75 |
| abstract_inverted_index.of | 56, 71, 97, 121 |
| abstract_inverted_index.or | 16 |
| abstract_inverted_index.to | 48, 88 |
| abstract_inverted_index.Our | 20 |
| abstract_inverted_index.The | 68 |
| abstract_inverted_index.Two | 105 |
| abstract_inverted_index.and | 31, 110 |
| abstract_inverted_index.few | 66 |
| abstract_inverted_index.for | 5, 50, 77 |
| abstract_inverted_index.our | 98, 122 |
| abstract_inverted_index.sum | 24 |
| abstract_inverted_index.the | 53, 114, 118 |
| abstract_inverted_index.only | 64 |
| abstract_inverted_index.over | 34 |
| abstract_inverted_index.test | 99 |
| abstract_inverted_index.them | 33 |
| abstract_inverted_index.time | 12 |
| abstract_inverted_index.weak | 103 |
| abstract_inverted_index.when | 60 |
| abstract_inverted_index.with | 52 |
| abstract_inverted_index.added | 54 |
| abstract_inverted_index.break | 79 |
| abstract_inverted_index.cases | 112 |
| abstract_inverted_index.dense | 15 |
| abstract_inverted_index.novel | 40 |
| abstract_inverted_index.occur | 62 |
| abstract_inverted_index.power | 59 |
| abstract_inverted_index.time. | 35 |
| abstract_inverted_index.which | 43 |
| abstract_inverted_index.MOSUM, | 42 |
| abstract_inverted_index.United | 115 |
| abstract_inverted_index.breaks | 61 |
| abstract_inverted_index.change | 8 |
| abstract_inverted_index.equity | 108 |
| abstract_inverted_index.method | 4, 21 |
| abstract_inverted_index.moving | 23, 46 |
| abstract_inverted_index.points | 9 |
| abstract_inverted_index.search | 49 |
| abstract_inverted_index.(MOSUM) | 25 |
| abstract_inverted_index.States, | 116 |
| abstract_inverted_index.Two-Way | 41 |
| abstract_inverted_index.breaks, | 51 |
| abstract_inverted_index.exhibit | 94 |
| abstract_inverted_index.further | 37 |
| abstract_inverted_index.groups. | 67 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.regions | 47 |
| abstract_inverted_index.returns | 109 |
| abstract_inverted_index.series, | 13 |
| abstract_inverted_index.studies | 93 |
| abstract_inverted_index.testing | 58, 78 |
| abstract_inverted_index.theorem | 87 |
| abstract_inverted_index.COVID-19 | 111 |
| abstract_inverted_index.Gaussian | 85 |
| abstract_inverted_index.limiting | 69 |
| abstract_inverted_index.multiple | 7 |
| abstract_inverted_index.proposed | 123 |
| abstract_inverted_index.showcase | 117 |
| abstract_inverted_index.signals. | 19, 104 |
| abstract_inverted_index.utilizes | 44 |
| abstract_inverted_index.advantage | 55 |
| abstract_inverted_index.analyzing | 107 |
| abstract_inverted_index.clustered | 18 |
| abstract_inverted_index.detecting | 6, 101 |
| abstract_inverted_index.enhancing | 57 |
| abstract_inverted_index.existence | 80 |
| abstract_inverted_index.extending | 82 |
| abstract_inverted_index.inference | 3 |
| abstract_inverted_index.introduce | 38 |
| abstract_inverted_index.maximizes | 32 |
| abstract_inverted_index.promising | 95 |
| abstract_inverted_index.relevance | 120 |
| abstract_inverted_index.spatially | 17 |
| abstract_inverted_index.statistic | 74 |
| abstract_inverted_index.targeting | 14 |
| abstract_inverted_index.Simulation | 92 |
| abstract_inverted_index.aggregates | 22 |
| abstract_inverted_index.non-sparse | 102 |
| abstract_inverted_index.processes. | 91 |
| abstract_inverted_index.real-world | 119 |
| abstract_inverted_index.statistics | 26 |
| abstract_inverted_index.algorithms. | 124 |
| abstract_inverted_index.established | 76 |
| abstract_inverted_index.performance | 96 |
| abstract_inverted_index.distribution | 70 |
| abstract_inverted_index.$\ell^2$-norm | 30 |
| abstract_inverted_index.applications, | 106 |
| abstract_inverted_index.approximation | 86 |
| abstract_inverted_index.non-stationary | 90 |
| abstract_inverted_index.high-dimensional | 11, 84 |
| abstract_inverted_index.spatial-temporal | 45, 89 |
| abstract_inverted_index.cross-sectionally | 27 |
| abstract_inverted_index.$\ell^2$-aggregated | 73 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile |