Ellora: Exploring Low-Power OFDM-based Radar Processors using Approximate Computing Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.00176
In recent times, orthogonal frequency-division multiplexing (OFDM)-based radar has gained wide acceptance given its applicability in joint radar-communication systems. However, realizing such a system on hardware poses a huge area and power bottleneck given its complexity. Therefore it has become ever-important to explore low-power OFDM-based radar processors in order to realize energy-efficient joint radar-communication systems targeting edge devices. This paper aims to address the aforementioned challenges by exploiting approximations on hardware for early design space exploration (DSE) of trade-offs between accuracy, area and power. We present Ellora, a DSE framework for incorporating approximations in an OFDM radar processing pipeline. Ellora uses pairs of approximate adders and multipliers to explore design points realizing energy-efficient radar processors. Particularly, we incorporate approximations into the block involving periodogram based estimation and report area, power and accuracy levels. Experimental results show that at an average accuracy loss of 0.063% in the positive SNR region, we save 22.9% of on-chip area and 26.2% of power. Towards achieving the area and power statistics, we design a fully parallel Inverse Fast Fourier Transform (IFFT) core which acts as a part of periodogram based estimation and approximate the addition and multiplication operations in it. The aforementioned results show that Ellora can be used in an integrated way with various other optimization methods for generating low-power and energy-efficient radar processors.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.00176
- https://arxiv.org/pdf/2312.00176
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389325535
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389325535Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.00176Digital Object Identifier
- Title
-
Ellora: Exploring Low-Power OFDM-based Radar Processors using Approximate ComputingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-30Full publication date if available
- Authors
-
Rajat Bhattacharjya, Alish Kanani, Atul Kumar, Manoj Nambiar, M Girish Chandra, Rekha SinghalList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.00176Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.00176Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.00176Direct OA link when available
- Concepts
-
Computer science, Orthogonal frequency-division multiplexing, Radar, Electronic engineering, Fast Fourier transform, Bottleneck, Pipeline (software), Power (physics), Efficient energy use, Energy (signal processing), Real-time computing, Computer engineering, Algorithm, Telecommunications, Embedded system, Engineering, Electrical engineering, Mathematics, Channel (broadcasting), Statistics, Programming language, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389325535 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.00176 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.00176 |
| ids.openalex | https://openalex.org/W4389325535 |
| fwci | |
| type | preprint |
| title | Ellora: Exploring Low-Power OFDM-based Radar Processors using Approximate Computing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12808 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9768000245094299 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Ferroelectric and Negative Capacitance Devices |
| topics[1].id | https://openalex.org/T10891 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9739000201225281 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Radar Systems and Signal Processing |
| topics[2].id | https://openalex.org/T11038 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9585000276565552 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Advanced SAR Imaging Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7151002287864685 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C40409654 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6716729402542114 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q375889 |
| concepts[1].display_name | Orthogonal frequency-division multiplexing |
| concepts[2].id | https://openalex.org/C554190296 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6130650639533997 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[2].display_name | Radar |
| concepts[3].id | https://openalex.org/C24326235 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5608157515525818 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[3].display_name | Electronic engineering |
| concepts[4].id | https://openalex.org/C75172450 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5315867066383362 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q623950 |
| concepts[4].display_name | Fast Fourier transform |
| concepts[5].id | https://openalex.org/C2780513914 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5290096402168274 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[5].display_name | Bottleneck |
| concepts[6].id | https://openalex.org/C43521106 |
| concepts[6].level | 2 |
| concepts[6].score | 0.520765483379364 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[6].display_name | Pipeline (software) |
| concepts[7].id | https://openalex.org/C163258240 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47218361496925354 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[7].display_name | Power (physics) |
| concepts[8].id | https://openalex.org/C2742236 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4535835385322571 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q924713 |
| concepts[8].display_name | Efficient energy use |
| concepts[9].id | https://openalex.org/C186370098 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41030097007751465 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[9].display_name | Energy (signal processing) |
| concepts[10].id | https://openalex.org/C79403827 |
| concepts[10].level | 1 |
| concepts[10].score | 0.38209348917007446 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[10].display_name | Real-time computing |
| concepts[11].id | https://openalex.org/C113775141 |
| concepts[11].level | 1 |
| concepts[11].score | 0.346202552318573 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[11].display_name | Computer engineering |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3146205544471741 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.21177271008491516 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C149635348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2102261781692505 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[14].display_name | Embedded system |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1784069836139679 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C119599485 |
| concepts[16].level | 1 |
| concepts[16].score | 0.14882072806358337 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[16].display_name | Electrical engineering |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.11111399531364441 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C127162648 |
| concepts[18].level | 2 |
| concepts[18].score | 0.08315384387969971 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[18].display_name | Channel (broadcasting) |
| concepts[19].id | https://openalex.org/C105795698 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[19].display_name | Statistics |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C62520636 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[22].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7151002287864685 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/orthogonal-frequency-division-multiplexing |
| keywords[1].score | 0.6716729402542114 |
| keywords[1].display_name | Orthogonal frequency-division multiplexing |
| keywords[2].id | https://openalex.org/keywords/radar |
| keywords[2].score | 0.6130650639533997 |
| keywords[2].display_name | Radar |
| keywords[3].id | https://openalex.org/keywords/electronic-engineering |
| keywords[3].score | 0.5608157515525818 |
| keywords[3].display_name | Electronic engineering |
| keywords[4].id | https://openalex.org/keywords/fast-fourier-transform |
| keywords[4].score | 0.5315867066383362 |
| keywords[4].display_name | Fast Fourier transform |
| keywords[5].id | https://openalex.org/keywords/bottleneck |
| keywords[5].score | 0.5290096402168274 |
| keywords[5].display_name | Bottleneck |
| keywords[6].id | https://openalex.org/keywords/pipeline |
| keywords[6].score | 0.520765483379364 |
| keywords[6].display_name | Pipeline (software) |
| keywords[7].id | https://openalex.org/keywords/power |
| keywords[7].score | 0.47218361496925354 |
| keywords[7].display_name | Power (physics) |
| keywords[8].id | https://openalex.org/keywords/efficient-energy-use |
| keywords[8].score | 0.4535835385322571 |
| keywords[8].display_name | Efficient energy use |
| keywords[9].id | https://openalex.org/keywords/energy |
| keywords[9].score | 0.41030097007751465 |
| keywords[9].display_name | Energy (signal processing) |
| keywords[10].id | https://openalex.org/keywords/real-time-computing |
| keywords[10].score | 0.38209348917007446 |
| keywords[10].display_name | Real-time computing |
| keywords[11].id | https://openalex.org/keywords/computer-engineering |
| keywords[11].score | 0.346202552318573 |
| keywords[11].display_name | Computer engineering |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.3146205544471741 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.21177271008491516 |
| keywords[13].display_name | Telecommunications |
| keywords[14].id | https://openalex.org/keywords/embedded-system |
| keywords[14].score | 0.2102261781692505 |
| keywords[14].display_name | Embedded system |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.1784069836139679 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/electrical-engineering |
| keywords[16].score | 0.14882072806358337 |
| keywords[16].display_name | Electrical engineering |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.11111399531364441 |
| keywords[17].display_name | Mathematics |
| keywords[18].id | https://openalex.org/keywords/channel |
| keywords[18].score | 0.08315384387969971 |
| keywords[18].display_name | Channel (broadcasting) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.00176 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.00176 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.00176 |
| locations[1].id | doi:10.48550/arxiv.2312.00176 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.00176 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5002184653 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8355-1398 |
| authorships[0].author.display_name | Rajat Bhattacharjya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bhattacharjya, Rajat |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006318342 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-8585-9241 |
| authorships[1].author.display_name | Alish Kanani |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kanani, Alish |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101716435 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0016-1061 |
| authorships[2].author.display_name | Atul Kumar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kumar, A Anil |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5070564061 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9001-0629 |
| authorships[3].author.display_name | Manoj Nambiar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nambiar, Manoj |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5035666448 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1479-0504 |
| authorships[4].author.display_name | M Girish Chandra |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chandra, M Girish |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5086400313 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3712-1784 |
| authorships[5].author.display_name | Rekha Singhal |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Singhal, Rekha |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.00176 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Ellora: Exploring Low-Power OFDM-based Radar Processors using Approximate Computing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12808 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9768000245094299 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Ferroelectric and Negative Capacitance Devices |
| related_works | https://openalex.org/W2595172197, https://openalex.org/W2084856301, https://openalex.org/W2127970246, https://openalex.org/W2885125400, https://openalex.org/W1001352512, https://openalex.org/W1989889224, https://openalex.org/W4382618745, https://openalex.org/W1973775000, https://openalex.org/W2748922771, https://openalex.org/W3013241373 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.00176 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.00176 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.00176 |
| primary_location.id | pmh:oai:arXiv.org:2312.00176 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.00176 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.00176 |
| publication_date | 2023-11-30 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 27, 87, 168, 180 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 84 |
| abstract_inverted_index.an | 94, 138, 205 |
| abstract_inverted_index.as | 179 |
| abstract_inverted_index.at | 137 |
| abstract_inverted_index.be | 202 |
| abstract_inverted_index.by | 66 |
| abstract_inverted_index.in | 15, 47, 93, 144, 193, 204 |
| abstract_inverted_index.it | 37 |
| abstract_inverted_index.of | 77, 102, 142, 152, 157, 182 |
| abstract_inverted_index.on | 24, 69 |
| abstract_inverted_index.to | 41, 49, 61, 107 |
| abstract_inverted_index.we | 116, 149, 166 |
| abstract_inverted_index.DSE | 88 |
| abstract_inverted_index.SNR | 147 |
| abstract_inverted_index.The | 195 |
| abstract_inverted_index.and | 30, 82, 105, 126, 130, 155, 163, 186, 190, 216 |
| abstract_inverted_index.can | 201 |
| abstract_inverted_index.for | 71, 90, 213 |
| abstract_inverted_index.has | 8, 38 |
| abstract_inverted_index.it. | 194 |
| abstract_inverted_index.its | 13, 34 |
| abstract_inverted_index.the | 63, 120, 145, 161, 188 |
| abstract_inverted_index.way | 207 |
| abstract_inverted_index.Fast | 172 |
| abstract_inverted_index.OFDM | 95 |
| abstract_inverted_index.This | 58 |
| abstract_inverted_index.acts | 178 |
| abstract_inverted_index.aims | 60 |
| abstract_inverted_index.area | 29, 81, 154, 162 |
| abstract_inverted_index.core | 176 |
| abstract_inverted_index.edge | 56 |
| abstract_inverted_index.huge | 28 |
| abstract_inverted_index.into | 119 |
| abstract_inverted_index.loss | 141 |
| abstract_inverted_index.part | 181 |
| abstract_inverted_index.save | 150 |
| abstract_inverted_index.show | 135, 198 |
| abstract_inverted_index.such | 21 |
| abstract_inverted_index.that | 136, 199 |
| abstract_inverted_index.used | 203 |
| abstract_inverted_index.uses | 100 |
| abstract_inverted_index.wide | 10 |
| abstract_inverted_index.with | 208 |
| abstract_inverted_index.(DSE) | 76 |
| abstract_inverted_index.22.9% | 151 |
| abstract_inverted_index.26.2% | 156 |
| abstract_inverted_index.area, | 128 |
| abstract_inverted_index.based | 124, 184 |
| abstract_inverted_index.block | 121 |
| abstract_inverted_index.early | 72 |
| abstract_inverted_index.fully | 169 |
| abstract_inverted_index.given | 12, 33 |
| abstract_inverted_index.joint | 16, 52 |
| abstract_inverted_index.order | 48 |
| abstract_inverted_index.other | 210 |
| abstract_inverted_index.pairs | 101 |
| abstract_inverted_index.paper | 59 |
| abstract_inverted_index.poses | 26 |
| abstract_inverted_index.power | 31, 129, 164 |
| abstract_inverted_index.radar | 7, 45, 96, 113, 218 |
| abstract_inverted_index.space | 74 |
| abstract_inverted_index.which | 177 |
| abstract_inverted_index.(IFFT) | 175 |
| abstract_inverted_index.0.063% | 143 |
| abstract_inverted_index.Ellora | 99, 200 |
| abstract_inverted_index.adders | 104 |
| abstract_inverted_index.become | 39 |
| abstract_inverted_index.design | 73, 109, 167 |
| abstract_inverted_index.gained | 9 |
| abstract_inverted_index.points | 110 |
| abstract_inverted_index.power. | 83, 158 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.report | 127 |
| abstract_inverted_index.system | 23 |
| abstract_inverted_index.times, | 2 |
| abstract_inverted_index.Ellora, | 86 |
| abstract_inverted_index.Fourier | 173 |
| abstract_inverted_index.Inverse | 171 |
| abstract_inverted_index.Towards | 159 |
| abstract_inverted_index.address | 62 |
| abstract_inverted_index.average | 139 |
| abstract_inverted_index.between | 79 |
| abstract_inverted_index.explore | 42, 108 |
| abstract_inverted_index.levels. | 132 |
| abstract_inverted_index.methods | 212 |
| abstract_inverted_index.on-chip | 153 |
| abstract_inverted_index.present | 85 |
| abstract_inverted_index.realize | 50 |
| abstract_inverted_index.region, | 148 |
| abstract_inverted_index.results | 134, 197 |
| abstract_inverted_index.systems | 54 |
| abstract_inverted_index.various | 209 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.accuracy | 131, 140 |
| abstract_inverted_index.addition | 189 |
| abstract_inverted_index.devices. | 57 |
| abstract_inverted_index.hardware | 25, 70 |
| abstract_inverted_index.parallel | 170 |
| abstract_inverted_index.positive | 146 |
| abstract_inverted_index.systems. | 18 |
| abstract_inverted_index.Therefore | 36 |
| abstract_inverted_index.Transform | 174 |
| abstract_inverted_index.accuracy, | 80 |
| abstract_inverted_index.achieving | 160 |
| abstract_inverted_index.framework | 89 |
| abstract_inverted_index.involving | 122 |
| abstract_inverted_index.low-power | 43, 215 |
| abstract_inverted_index.pipeline. | 98 |
| abstract_inverted_index.realizing | 20, 111 |
| abstract_inverted_index.targeting | 55 |
| abstract_inverted_index.OFDM-based | 44 |
| abstract_inverted_index.acceptance | 11 |
| abstract_inverted_index.bottleneck | 32 |
| abstract_inverted_index.challenges | 65 |
| abstract_inverted_index.estimation | 125, 185 |
| abstract_inverted_index.exploiting | 67 |
| abstract_inverted_index.generating | 214 |
| abstract_inverted_index.integrated | 206 |
| abstract_inverted_index.operations | 192 |
| abstract_inverted_index.orthogonal | 3 |
| abstract_inverted_index.processing | 97 |
| abstract_inverted_index.processors | 46 |
| abstract_inverted_index.trade-offs | 78 |
| abstract_inverted_index.approximate | 103, 187 |
| abstract_inverted_index.complexity. | 35 |
| abstract_inverted_index.exploration | 75 |
| abstract_inverted_index.incorporate | 117 |
| abstract_inverted_index.multipliers | 106 |
| abstract_inverted_index.periodogram | 123, 183 |
| abstract_inverted_index.processors. | 114, 219 |
| abstract_inverted_index.statistics, | 165 |
| abstract_inverted_index.(OFDM)-based | 6 |
| abstract_inverted_index.Experimental | 133 |
| abstract_inverted_index.multiplexing | 5 |
| abstract_inverted_index.optimization | 211 |
| abstract_inverted_index.Particularly, | 115 |
| abstract_inverted_index.applicability | 14 |
| abstract_inverted_index.incorporating | 91 |
| abstract_inverted_index.aforementioned | 64, 196 |
| abstract_inverted_index.approximations | 68, 92, 118 |
| abstract_inverted_index.ever-important | 40 |
| abstract_inverted_index.multiplication | 191 |
| abstract_inverted_index.energy-efficient | 51, 112, 217 |
| abstract_inverted_index.frequency-division | 4 |
| abstract_inverted_index.radar-communication | 17, 53 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |