Elucidating user behaviours in a digital health surveillance system to correct prevalence estimates Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1016/j.epidem.2020.100404
Estimating seasonal influenza prevalence is of undeniable public health importance, but remains challenging with traditional datasets due to cost and timeliness. Digital epidemiology has the potential to address this challenge, but can introduce sampling biases that are distinct to traditional systems. In online participatory health surveillance systems, the voluntary nature of the data generating process must be considered to address potential biases in estimates. Here we examine user behaviours in one such platform, FluTracking, from 2011 to 2017. We build a Bayesian model to estimate probabilities of an individual reporting in each week, given their past reporting behaviour, and to infer the weekly prevalence of influenza-like-illness (ILI) in Australia. We show that a model that corrects for user behaviour can substantially affect ILI estimates. The model examined here elucidates several factors, such as the status of having ILI and consistency of prior reporting, that are strongly associated with the likelihood of participating in online health surveillance systems. This framework could be applied to other digital participatory health systems where participation is inconsistent and sampling bias may be of concern.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.epidem.2020.100404
- OA Status
- gold
- Cited By
- 2
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3084058483
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3084058483Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.epidem.2020.100404Digital Object Identifier
- Title
-
Elucidating user behaviours in a digital health surveillance system to correct prevalence estimatesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-09-09Full publication date if available
- Authors
-
Dennis Liu, Lewis Mitchell, Robert C. Cope, Sandra J. Carlson, Joshua V. RossList of authors in order
- Landing page
-
https://doi.org/10.1016/j.epidem.2020.100404Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.epidem.2020.100404Direct OA link when available
- Concepts
-
Consistency (knowledge bases), Bayesian probability, Computer science, Public health, Influenza-like illness, Sampling (signal processing), Environmental health, Data science, Medicine, Econometrics, Artificial intelligence, Mathematics, Computer vision, Virus, Filter (signal processing), Nursing, VirologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3084058483 |
|---|---|
| doi | https://doi.org/10.1016/j.epidem.2020.100404 |
| ids.doi | https://doi.org/10.1016/j.epidem.2020.100404 |
| ids.mag | 3084058483 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33002805 |
| ids.openalex | https://openalex.org/W3084058483 |
| fwci | 0.35857174 |
| mesh[0].qualifier_ui | Q000453 |
| mesh[0].descriptor_ui | D001315 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | epidemiology |
| mesh[0].descriptor_name | Australia |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001499 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Bayes Theorem |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D062665 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Epidemiological Monitoring |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | Q000453 |
| mesh[4].descriptor_ui | D007251 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | epidemiology |
| mesh[4].descriptor_name | Influenza, Human |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D015995 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Prevalence |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D011634 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Public Health |
| mesh[7].qualifier_ui | Q000453 |
| mesh[7].descriptor_ui | D001315 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | epidemiology |
| mesh[7].descriptor_name | Australia |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D001499 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Bayes Theorem |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D062665 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Epidemiological Monitoring |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | Q000453 |
| mesh[11].descriptor_ui | D007251 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | epidemiology |
| mesh[11].descriptor_name | Influenza, Human |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D015995 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Prevalence |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D011634 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Public Health |
| type | article |
| title | Elucidating user behaviours in a digital health surveillance system to correct prevalence estimates |
| biblio.issue | |
| biblio.volume | 33 |
| biblio.last_page | 100404 |
| biblio.first_page | 100404 |
| topics[0].id | https://openalex.org/T10167 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Influenza Virus Research Studies |
| topics[1].id | https://openalex.org/T11819 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Data-Driven Disease Surveillance |
| topics[2].id | https://openalex.org/T10410 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9930999875068665 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2611 |
| topics[2].subfield.display_name | Modeling and Simulation |
| topics[2].display_name | COVID-19 epidemiological studies |
| funders[0].id | https://openalex.org/F4320334705 |
| funders[0].ror | https://ror.org/011kf5r70 |
| funders[0].display_name | National Health and Medical Research Council |
| funders[1].id | https://openalex.org/F4320335741 |
| funders[1].ror | |
| funders[1].display_name | Data to Decisions Cooperative Research Centres |
| funders[2].id | https://openalex.org/F4320338184 |
| funders[2].ror | https://ror.org/02vcqg248 |
| funders[2].display_name | Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers |
| is_xpac | False |
| apc_list.value | 2460 |
| apc_list.currency | USD |
| apc_list.value_usd | 2460 |
| apc_paid.value | 2460 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2460 |
| concepts[0].id | https://openalex.org/C2776436953 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5916110277175903 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[0].display_name | Consistency (knowledge bases) |
| concepts[1].id | https://openalex.org/C107673813 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4985823631286621 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[1].display_name | Bayesian probability |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4920034110546112 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C138816342 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4900587797164917 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189603 |
| concepts[3].display_name | Public health |
| concepts[4].id | https://openalex.org/C2779954635 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4608544707298279 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3508755 |
| concepts[4].display_name | Influenza-like illness |
| concepts[5].id | https://openalex.org/C140779682 |
| concepts[5].level | 3 |
| concepts[5].score | 0.43147939443588257 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[5].display_name | Sampling (signal processing) |
| concepts[6].id | https://openalex.org/C99454951 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4252779483795166 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[6].display_name | Environmental health |
| concepts[7].id | https://openalex.org/C2522767166 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4027159810066223 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[7].display_name | Data science |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.34259432554244995 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C149782125 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33842915296554565 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[9].display_name | Econometrics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13050222396850586 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08953681588172913 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C2522874641 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q808 |
| concepts[13].display_name | Virus |
| concepts[14].id | https://openalex.org/C106131492 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[14].display_name | Filter (signal processing) |
| concepts[15].id | https://openalex.org/C159110408 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q121176 |
| concepts[15].display_name | Nursing |
| concepts[16].id | https://openalex.org/C159047783 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[16].display_name | Virology |
| keywords[0].id | https://openalex.org/keywords/consistency |
| keywords[0].score | 0.5916110277175903 |
| keywords[0].display_name | Consistency (knowledge bases) |
| keywords[1].id | https://openalex.org/keywords/bayesian-probability |
| keywords[1].score | 0.4985823631286621 |
| keywords[1].display_name | Bayesian probability |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4920034110546112 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/public-health |
| keywords[3].score | 0.4900587797164917 |
| keywords[3].display_name | Public health |
| keywords[4].id | https://openalex.org/keywords/influenza-like-illness |
| keywords[4].score | 0.4608544707298279 |
| keywords[4].display_name | Influenza-like illness |
| keywords[5].id | https://openalex.org/keywords/sampling |
| keywords[5].score | 0.43147939443588257 |
| keywords[5].display_name | Sampling (signal processing) |
| keywords[6].id | https://openalex.org/keywords/environmental-health |
| keywords[6].score | 0.4252779483795166 |
| keywords[6].display_name | Environmental health |
| keywords[7].id | https://openalex.org/keywords/data-science |
| keywords[7].score | 0.4027159810066223 |
| keywords[7].display_name | Data science |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.34259432554244995 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/econometrics |
| keywords[9].score | 0.33842915296554565 |
| keywords[9].display_name | Econometrics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.13050222396850586 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.08953681588172913 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.epidem.2020.100404 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S24717195 |
| locations[0].source.issn | 1755-4365, 1878-0067 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1755-4365 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Epidemics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Epidemics |
| locations[0].landing_page_url | https://doi.org/10.1016/j.epidem.2020.100404 |
| locations[1].id | pmid:33002805 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Epidemics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33002805 |
| locations[2].id | pmh:oai:digital.library.adelaide.edu.au:2440/129663 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401835 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Adelaide Research & Scholarship (AR&S) (University of Adelaide) |
| locations[2].source.host_organization | https://openalex.org/I5681781 |
| locations[2].source.host_organization_name | University of Adelaide |
| locations[2].source.host_organization_lineage | https://openalex.org/I5681781 |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Journal article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | http://dx.doi.org/10.1016/j.epidem.2020.100404 |
| locations[2].landing_page_url | http://hdl.handle.net/2440/129663 |
| locations[3].id | pmh:oai:doaj.org/article:e8279706baf7435f86209b24b5e495c8 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Epidemics, Vol 33, Iss , Pp 100404- (2020) |
| locations[3].landing_page_url | https://doaj.org/article/e8279706baf7435f86209b24b5e495c8 |
| locations[4].id | pmh:oai:openresearch-repository.anu.edu.au:1885/315885 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306402539 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | ANU Open Research (Australian National University) |
| locations[4].source.host_organization | https://openalex.org/I118347636 |
| locations[4].source.host_organization_name | Australian National University |
| locations[4].source.host_organization_lineage | https://openalex.org/I118347636 |
| locations[4].license | cc-by-nc-nd |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Journal article |
| locations[4].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Epidemics |
| locations[4].landing_page_url | http://hdl.handle.net/1885/315885 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5053240402 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9180-2620 |
| authorships[0].author.display_name | Dennis Liu |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210123005 |
| authorships[0].affiliations[0].raw_affiliation_string | ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Australia |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I5681781 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Mathematical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5015, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I4210123005 |
| authorships[0].institutions[0].ror | https://ror.org/02vcqg248 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1337719021, https://openalex.org/I165779595, https://openalex.org/I2801453606, https://openalex.org/I4210123005, https://openalex.org/I4210132349 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | ARC Centre of Excellence for Mathematical and Statistical Frontiers |
| authorships[0].institutions[1].id | https://openalex.org/I5681781 |
| authorships[0].institutions[1].ror | https://ror.org/00892tw58 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I5681781 |
| authorships[0].institutions[1].country_code | AU |
| authorships[0].institutions[1].display_name | The University of Adelaide |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dennis Liu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Australia, School of Mathematical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5015, Australia |
| authorships[1].author.id | https://openalex.org/A5055805371 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8191-1997 |
| authorships[1].author.display_name | Lewis Mitchell |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I5681781 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5015, Australia |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210123005 |
| authorships[1].affiliations[1].raw_affiliation_string | ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Australia |
| authorships[1].institutions[0].id | https://openalex.org/I4210123005 |
| authorships[1].institutions[0].ror | https://ror.org/02vcqg248 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1337719021, https://openalex.org/I165779595, https://openalex.org/I2801453606, https://openalex.org/I4210123005, https://openalex.org/I4210132349 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | ARC Centre of Excellence for Mathematical and Statistical Frontiers |
| authorships[1].institutions[1].id | https://openalex.org/I5681781 |
| authorships[1].institutions[1].ror | https://ror.org/00892tw58 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I5681781 |
| authorships[1].institutions[1].country_code | AU |
| authorships[1].institutions[1].display_name | The University of Adelaide |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lewis Mitchell |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Australia, School of Mathematical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5015, Australia |
| authorships[2].author.id | https://openalex.org/A5015430526 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2048-858X |
| authorships[2].author.display_name | Robert C. Cope |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I118347636 |
| authorships[2].affiliations[0].raw_affiliation_string | Biological Data Science Institute, The Australian National University, Canberra, ACT 2601, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I118347636 |
| authorships[2].institutions[0].ror | https://ror.org/019wvm592 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I118347636 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Australian National University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Robert C. Cope |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Biological Data Science Institute, The Australian National University, Canberra, ACT 2601, Australia |
| authorships[3].author.id | https://openalex.org/A5018625457 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1400-4518 |
| authorships[3].author.display_name | Sandra J. Carlson |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210154888 |
| authorships[3].affiliations[0].raw_affiliation_string | Hunter New England Population Health, Wallsend, NSW 2287, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I4210154888 |
| authorships[3].institutions[0].ror | https://ror.org/050b31k83 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210154888 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Hunter New England Local Health District |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sandra J. Carlson |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hunter New England Population Health, Wallsend, NSW 2287, Australia |
| authorships[4].author.id | https://openalex.org/A5026776788 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9918-8167 |
| authorships[4].author.display_name | Joshua V. Ross |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I5681781 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Mathematical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5015, Australia |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210123005 |
| authorships[4].affiliations[1].raw_affiliation_string | ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Australia |
| authorships[4].institutions[0].id | https://openalex.org/I4210123005 |
| authorships[4].institutions[0].ror | https://ror.org/02vcqg248 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1337719021, https://openalex.org/I165779595, https://openalex.org/I2801453606, https://openalex.org/I4210123005, https://openalex.org/I4210132349 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | ARC Centre of Excellence for Mathematical and Statistical Frontiers |
| authorships[4].institutions[1].id | https://openalex.org/I5681781 |
| authorships[4].institutions[1].ror | https://ror.org/00892tw58 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I5681781 |
| authorships[4].institutions[1].country_code | AU |
| authorships[4].institutions[1].display_name | The University of Adelaide |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Joshua V. Ross |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Australia, School of Mathematical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5015, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.epidem.2020.100404 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Elucidating user behaviours in a digital health surveillance system to correct prevalence estimates |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10167 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Influenza Virus Research Studies |
| related_works | https://openalex.org/W1603736412, https://openalex.org/W4304185162, https://openalex.org/W2061685118, https://openalex.org/W3006282800, https://openalex.org/W2462100143, https://openalex.org/W1770503332, https://openalex.org/W3125207769, https://openalex.org/W2577825108, https://openalex.org/W2949684406, https://openalex.org/W2055661376 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1016/j.epidem.2020.100404 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S24717195 |
| best_oa_location.source.issn | 1755-4365, 1878-0067 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1755-4365 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Epidemics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Epidemics |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.epidem.2020.100404 |
| primary_location.id | doi:10.1016/j.epidem.2020.100404 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S24717195 |
| primary_location.source.issn | 1755-4365, 1878-0067 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1755-4365 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Epidemics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Epidemics |
| primary_location.landing_page_url | https://doi.org/10.1016/j.epidem.2020.100404 |
| publication_date | 2020-09-09 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2148013191, https://openalex.org/W2886058125, https://openalex.org/W2604251580, https://openalex.org/W2962703949, https://openalex.org/W2009457892, https://openalex.org/W2939677118, https://openalex.org/W2577537660, https://openalex.org/W2169853500, https://openalex.org/W6674776658, https://openalex.org/W2885104824, https://openalex.org/W6633711816, https://openalex.org/W2143523119, https://openalex.org/W2783645180, https://openalex.org/W2549072498, https://openalex.org/W2809677895, https://openalex.org/W2010123683, https://openalex.org/W2759138710, https://openalex.org/W2964205323, https://openalex.org/W1494363157, https://openalex.org/W2082309080, https://openalex.org/W2067059732, https://openalex.org/W2143654742, https://openalex.org/W2184096506, https://openalex.org/W2798492618, https://openalex.org/W2097427594, https://openalex.org/W1566452460 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 80, 112 |
| abstract_inverted_index.In | 41 |
| abstract_inverted_index.We | 78, 109 |
| abstract_inverted_index.an | 87 |
| abstract_inverted_index.as | 132 |
| abstract_inverted_index.be | 56, 160, 176 |
| abstract_inverted_index.in | 62, 69, 90, 107, 152 |
| abstract_inverted_index.is | 4, 170 |
| abstract_inverted_index.of | 5, 50, 86, 104, 135, 140, 150, 177 |
| abstract_inverted_index.to | 17, 26, 38, 58, 76, 83, 99, 162 |
| abstract_inverted_index.we | 65 |
| abstract_inverted_index.ILI | 122, 137 |
| abstract_inverted_index.The | 124 |
| abstract_inverted_index.and | 19, 98, 138, 172 |
| abstract_inverted_index.are | 36, 144 |
| abstract_inverted_index.but | 10, 30 |
| abstract_inverted_index.can | 31, 119 |
| abstract_inverted_index.due | 16 |
| abstract_inverted_index.for | 116 |
| abstract_inverted_index.has | 23 |
| abstract_inverted_index.may | 175 |
| abstract_inverted_index.one | 70 |
| abstract_inverted_index.the | 24, 47, 51, 101, 133, 148 |
| abstract_inverted_index.2011 | 75 |
| abstract_inverted_index.Here | 64 |
| abstract_inverted_index.This | 157 |
| abstract_inverted_index.bias | 174 |
| abstract_inverted_index.cost | 18 |
| abstract_inverted_index.data | 52 |
| abstract_inverted_index.each | 91 |
| abstract_inverted_index.from | 74 |
| abstract_inverted_index.here | 127 |
| abstract_inverted_index.must | 55 |
| abstract_inverted_index.past | 95 |
| abstract_inverted_index.show | 110 |
| abstract_inverted_index.such | 71, 131 |
| abstract_inverted_index.that | 35, 111, 114, 143 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.user | 67, 117 |
| abstract_inverted_index.with | 13, 147 |
| abstract_inverted_index.(ILI) | 106 |
| abstract_inverted_index.2017. | 77 |
| abstract_inverted_index.build | 79 |
| abstract_inverted_index.could | 159 |
| abstract_inverted_index.given | 93 |
| abstract_inverted_index.infer | 100 |
| abstract_inverted_index.model | 82, 113, 125 |
| abstract_inverted_index.other | 163 |
| abstract_inverted_index.prior | 141 |
| abstract_inverted_index.their | 94 |
| abstract_inverted_index.week, | 92 |
| abstract_inverted_index.where | 168 |
| abstract_inverted_index.affect | 121 |
| abstract_inverted_index.biases | 34, 61 |
| abstract_inverted_index.having | 136 |
| abstract_inverted_index.health | 8, 44, 154, 166 |
| abstract_inverted_index.nature | 49 |
| abstract_inverted_index.online | 42, 153 |
| abstract_inverted_index.public | 7 |
| abstract_inverted_index.status | 134 |
| abstract_inverted_index.weekly | 102 |
| abstract_inverted_index.Digital | 21 |
| abstract_inverted_index.address | 27, 59 |
| abstract_inverted_index.applied | 161 |
| abstract_inverted_index.digital | 164 |
| abstract_inverted_index.examine | 66 |
| abstract_inverted_index.process | 54 |
| abstract_inverted_index.remains | 11 |
| abstract_inverted_index.several | 129 |
| abstract_inverted_index.systems | 167 |
| abstract_inverted_index.Bayesian | 81 |
| abstract_inverted_index.concern. | 178 |
| abstract_inverted_index.corrects | 115 |
| abstract_inverted_index.datasets | 15 |
| abstract_inverted_index.distinct | 37 |
| abstract_inverted_index.estimate | 84 |
| abstract_inverted_index.examined | 126 |
| abstract_inverted_index.factors, | 130 |
| abstract_inverted_index.sampling | 33, 173 |
| abstract_inverted_index.seasonal | 1 |
| abstract_inverted_index.strongly | 145 |
| abstract_inverted_index.systems, | 46 |
| abstract_inverted_index.systems. | 40, 156 |
| abstract_inverted_index.behaviour | 118 |
| abstract_inverted_index.framework | 158 |
| abstract_inverted_index.influenza | 2 |
| abstract_inverted_index.introduce | 32 |
| abstract_inverted_index.platform, | 72 |
| abstract_inverted_index.potential | 25, 60 |
| abstract_inverted_index.reporting | 89, 96 |
| abstract_inverted_index.voluntary | 48 |
| abstract_inverted_index.Australia. | 108 |
| abstract_inverted_index.Estimating | 0 |
| abstract_inverted_index.associated | 146 |
| abstract_inverted_index.behaviour, | 97 |
| abstract_inverted_index.behaviours | 68 |
| abstract_inverted_index.challenge, | 29 |
| abstract_inverted_index.considered | 57 |
| abstract_inverted_index.elucidates | 128 |
| abstract_inverted_index.estimates. | 63, 123 |
| abstract_inverted_index.generating | 53 |
| abstract_inverted_index.individual | 88 |
| abstract_inverted_index.likelihood | 149 |
| abstract_inverted_index.prevalence | 3, 103 |
| abstract_inverted_index.reporting, | 142 |
| abstract_inverted_index.undeniable | 6 |
| abstract_inverted_index.challenging | 12 |
| abstract_inverted_index.consistency | 139 |
| abstract_inverted_index.importance, | 9 |
| abstract_inverted_index.timeliness. | 20 |
| abstract_inverted_index.traditional | 14, 39 |
| abstract_inverted_index.FluTracking, | 73 |
| abstract_inverted_index.epidemiology | 22 |
| abstract_inverted_index.inconsistent | 171 |
| abstract_inverted_index.surveillance | 45, 155 |
| abstract_inverted_index.participating | 151 |
| abstract_inverted_index.participation | 169 |
| abstract_inverted_index.participatory | 43, 165 |
| abstract_inverted_index.probabilities | 85 |
| abstract_inverted_index.substantially | 120 |
| abstract_inverted_index.influenza-like-illness | 105 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5053240402 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210123005, https://openalex.org/I5681781 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.61511133 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |