Embedding in Recommender Systems: A Survey Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.18608
Recommender systems have become an essential component of many online platforms, providing personalized recommendations to users. A crucial aspect is embedding techniques that convert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors, which can enhance the recommendation performance. Embedding techniques have revolutionized the capture of complex entity relationships, generating significant research interest. This survey presents a comprehensive analysis of recent advances in recommender system embedding techniques. We examine centralized embedding approaches across matrix, sequential, and graph structures. In matrix-based scenarios, collaborative filtering generates embeddings that effectively model user-item preferences, particularly in sparse data environments. For sequential data, we explore various approaches including recurrent neural networks and self-supervised methods such as contrastive and generative learning. In graph-structured contexts, we analyze techniques like node2vec that leverage network relationships, along with applicable self-supervised methods. Our survey addresses critical scalability challenges in embedding methods and explores innovative directions in recommender systems. We introduce emerging approaches, including AutoML, hashing techniques, and quantization methods, to enhance performance while reducing computational complexity. Additionally, we examine the promising role of Large Language Models (LLMs) in embedding enhancement. Through detailed discussion of various architectures and methodologies, this survey aims to provide a thorough overview of state-of-the-art embedding techniques in recommender systems, while highlighting key challenges and future research directions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.18608
- https://arxiv.org/pdf/2310.18608
- OA Status
- green
- Cited By
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388092643
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388092643Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.18608Digital Object Identifier
- Title
-
Embedding in Recommender Systems: A SurveyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-28Full publication date if available
- Authors
-
Xiangyu Zhao, Maolin Wang, Xinjian Zhao, Jiansheng Li, Shucheng Zhou, Dawei Yin, Qing Li, Jiliang Tang, Ruocheng GuoList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.18608Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.18608Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.18608Direct OA link when available
- Concepts
-
Recommender system, Computer science, Embedding, Scalability, Leverage (statistics), Collaborative filtering, Exploit, Machine learning, Data science, Graph, Field (mathematics), Artificial intelligence, Theoretical computer science, Database, Computer security, Mathematics, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388092643 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.18608 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.18608 |
| ids.openalex | https://openalex.org/W4388092643 |
| fwci | |
| type | preprint |
| title | Embedding in Recommender Systems: A Survey |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T11273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9682999849319458 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Graph Neural Networks |
| topics[2].id | https://openalex.org/T12488 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.933899998664856 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3207 |
| topics[2].subfield.display_name | Social Psychology |
| topics[2].display_name | Mental Health via Writing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C557471498 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8637439012527466 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[0].display_name | Recommender system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7804067134857178 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C41608201 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6373026371002197 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[2].display_name | Embedding |
| concepts[3].id | https://openalex.org/C48044578 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6369544863700867 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[3].display_name | Scalability |
| concepts[4].id | https://openalex.org/C153083717 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6323356032371521 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[4].display_name | Leverage (statistics) |
| concepts[5].id | https://openalex.org/C21569690 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6226341128349304 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q94702 |
| concepts[5].display_name | Collaborative filtering |
| concepts[6].id | https://openalex.org/C165696696 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5634562969207764 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[6].display_name | Exploit |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44560280442237854 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.42122071981430054 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C132525143 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41481366753578186 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[9].display_name | Graph |
| concepts[10].id | https://openalex.org/C9652623 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41244927048683167 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[10].display_name | Field (mathematics) |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.39352044463157654 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C80444323 |
| concepts[12].level | 1 |
| concepts[12].score | 0.30631524324417114 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[12].display_name | Theoretical computer science |
| concepts[13].id | https://openalex.org/C77088390 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09956580400466919 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[13].display_name | Database |
| concepts[14].id | https://openalex.org/C38652104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[14].display_name | Computer security |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C202444582 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[16].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/recommender-system |
| keywords[0].score | 0.8637439012527466 |
| keywords[0].display_name | Recommender system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7804067134857178 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/embedding |
| keywords[2].score | 0.6373026371002197 |
| keywords[2].display_name | Embedding |
| keywords[3].id | https://openalex.org/keywords/scalability |
| keywords[3].score | 0.6369544863700867 |
| keywords[3].display_name | Scalability |
| keywords[4].id | https://openalex.org/keywords/leverage |
| keywords[4].score | 0.6323356032371521 |
| keywords[4].display_name | Leverage (statistics) |
| keywords[5].id | https://openalex.org/keywords/collaborative-filtering |
| keywords[5].score | 0.6226341128349304 |
| keywords[5].display_name | Collaborative filtering |
| keywords[6].id | https://openalex.org/keywords/exploit |
| keywords[6].score | 0.5634562969207764 |
| keywords[6].display_name | Exploit |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.44560280442237854 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.42122071981430054 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/graph |
| keywords[9].score | 0.41481366753578186 |
| keywords[9].display_name | Graph |
| keywords[10].id | https://openalex.org/keywords/field |
| keywords[10].score | 0.41244927048683167 |
| keywords[10].display_name | Field (mathematics) |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.39352044463157654 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[12].score | 0.30631524324417114 |
| keywords[12].display_name | Theoretical computer science |
| keywords[13].id | https://openalex.org/keywords/database |
| keywords[13].score | 0.09956580400466919 |
| keywords[13].display_name | Database |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.18608 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.18608 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.18608 |
| locations[1].id | doi:10.48550/arxiv.2310.18608 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.18608 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100645854 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2926-4416 |
| authorships[0].author.display_name | Xiangyu Zhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhao, Xiangyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014749523 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7449-9834 |
| authorships[1].author.display_name | Maolin Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Maolin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100584820 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xinjian Zhao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhao, Xinjian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114686115 |
| authorships[3].author.orcid | https://orcid.org/0009-0001-4281-7794 |
| authorships[3].author.display_name | Jiansheng Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Jiansheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5058874021 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Shucheng Zhou |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhou, Shucheng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101771060 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0684-6205 |
| authorships[5].author.display_name | Dawei Yin |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yin, Dawei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100404176 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3370-471X |
| authorships[6].author.display_name | Qing Li |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Li, Qing |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5040639891 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7125-3898 |
| authorships[7].author.display_name | Jiliang Tang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Tang, Jiliang |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5054719216 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-8522-6142 |
| authorships[8].author.display_name | Ruocheng Guo |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Guo, Ruocheng |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.18608 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-11-01T00:00:00 |
| display_name | Embedding in Recommender Systems: A Survey |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| related_works | https://openalex.org/W2772628444, https://openalex.org/W1484355083, https://openalex.org/W4220714703, https://openalex.org/W2098758514, https://openalex.org/W2735929803, https://openalex.org/W3008845055, https://openalex.org/W2170391450, https://openalex.org/W4376854386, https://openalex.org/W2202724490, https://openalex.org/W2508671622 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.18608 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.18608 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.18608 |
| primary_location.id | pmh:oai:arXiv.org:2310.18608 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.18608 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.18608 |
| publication_date | 2023-10-28 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 16 |
| abstract_inverted_index.a | 61, 198 |
| abstract_inverted_index.In | 83, 120 |
| abstract_inverted_index.We | 72, 153 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.as | 29, 115 |
| abstract_inverted_index.in | 67, 96, 143, 150, 182, 205 |
| abstract_inverted_index.is | 19 |
| abstract_inverted_index.of | 7, 50, 64, 177, 188, 201 |
| abstract_inverted_index.to | 14, 164, 196 |
| abstract_inverted_index.we | 103, 123, 172 |
| abstract_inverted_index.For | 100 |
| abstract_inverted_index.Our | 137 |
| abstract_inverted_index.and | 31, 80, 111, 117, 146, 161, 191, 212 |
| abstract_inverted_index.can | 39 |
| abstract_inverted_index.key | 210 |
| abstract_inverted_index.the | 24, 41, 48, 174 |
| abstract_inverted_index.IDs, | 33 |
| abstract_inverted_index.This | 58 |
| abstract_inverted_index.aims | 195 |
| abstract_inverted_index.data | 98 |
| abstract_inverted_index.have | 2, 46 |
| abstract_inverted_index.into | 34 |
| abstract_inverted_index.item | 32 |
| abstract_inverted_index.like | 126 |
| abstract_inverted_index.many | 8 |
| abstract_inverted_index.role | 176 |
| abstract_inverted_index.such | 28, 114 |
| abstract_inverted_index.that | 22, 90, 128 |
| abstract_inverted_index.this | 193 |
| abstract_inverted_index.user | 30 |
| abstract_inverted_index.with | 133 |
| abstract_inverted_index.Large | 178 |
| abstract_inverted_index.along | 132 |
| abstract_inverted_index.data, | 102 |
| abstract_inverted_index.graph | 81 |
| abstract_inverted_index.model | 92 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.while | 167, 208 |
| abstract_inverted_index.(LLMs) | 181 |
| abstract_inverted_index.Models | 180 |
| abstract_inverted_index.across | 77 |
| abstract_inverted_index.aspect | 18 |
| abstract_inverted_index.become | 3 |
| abstract_inverted_index.entity | 52 |
| abstract_inverted_index.future | 213 |
| abstract_inverted_index.neural | 109 |
| abstract_inverted_index.online | 9 |
| abstract_inverted_index.recent | 65 |
| abstract_inverted_index.sparse | 97 |
| abstract_inverted_index.survey | 59, 138, 194 |
| abstract_inverted_index.system | 69 |
| abstract_inverted_index.users. | 15 |
| abstract_inverted_index.AutoML, | 158 |
| abstract_inverted_index.Through | 185 |
| abstract_inverted_index.analyze | 124 |
| abstract_inverted_index.capture | 49 |
| abstract_inverted_index.complex | 51 |
| abstract_inverted_index.convert | 23 |
| abstract_inverted_index.crucial | 17 |
| abstract_inverted_index.enhance | 40, 165 |
| abstract_inverted_index.examine | 73, 173 |
| abstract_inverted_index.explore | 104 |
| abstract_inverted_index.hashing | 159 |
| abstract_inverted_index.matrix, | 78 |
| abstract_inverted_index.methods | 113, 145 |
| abstract_inverted_index.network | 130 |
| abstract_inverted_index.provide | 197 |
| abstract_inverted_index.systems | 1 |
| abstract_inverted_index.various | 105, 189 |
| abstract_inverted_index.Language | 179 |
| abstract_inverted_index.advances | 66 |
| abstract_inverted_index.analysis | 63 |
| abstract_inverted_index.critical | 140 |
| abstract_inverted_index.detailed | 186 |
| abstract_inverted_index.discrete | 26 |
| abstract_inverted_index.emerging | 155 |
| abstract_inverted_index.explores | 147 |
| abstract_inverted_index.leverage | 129 |
| abstract_inverted_index.methods, | 163 |
| abstract_inverted_index.methods. | 136 |
| abstract_inverted_index.networks | 110 |
| abstract_inverted_index.node2vec | 127 |
| abstract_inverted_index.overview | 200 |
| abstract_inverted_index.presents | 60 |
| abstract_inverted_index.reducing | 168 |
| abstract_inverted_index.research | 56, 214 |
| abstract_inverted_index.systems, | 207 |
| abstract_inverted_index.systems. | 152 |
| abstract_inverted_index.thorough | 199 |
| abstract_inverted_index.vectors, | 37 |
| abstract_inverted_index.Embedding | 44 |
| abstract_inverted_index.addresses | 139 |
| abstract_inverted_index.component | 6 |
| abstract_inverted_index.contexts, | 122 |
| abstract_inverted_index.embedding | 20, 70, 75, 144, 183, 203 |
| abstract_inverted_index.essential | 5 |
| abstract_inverted_index.features, | 27 |
| abstract_inverted_index.filtering | 87 |
| abstract_inverted_index.generates | 88 |
| abstract_inverted_index.including | 107, 157 |
| abstract_inverted_index.interest. | 57 |
| abstract_inverted_index.introduce | 154 |
| abstract_inverted_index.learning. | 119 |
| abstract_inverted_index.promising | 175 |
| abstract_inverted_index.providing | 11 |
| abstract_inverted_index.recurrent | 108 |
| abstract_inverted_index.user-item | 93 |
| abstract_inverted_index.applicable | 134 |
| abstract_inverted_index.approaches | 76, 106 |
| abstract_inverted_index.challenges | 142, 211 |
| abstract_inverted_index.continuous | 36 |
| abstract_inverted_index.directions | 149 |
| abstract_inverted_index.discussion | 187 |
| abstract_inverted_index.embeddings | 89 |
| abstract_inverted_index.generating | 54 |
| abstract_inverted_index.generative | 118 |
| abstract_inverted_index.innovative | 148 |
| abstract_inverted_index.platforms, | 10 |
| abstract_inverted_index.scenarios, | 85 |
| abstract_inverted_index.sequential | 101 |
| abstract_inverted_index.techniques | 21, 45, 125, 204 |
| abstract_inverted_index.Recommender | 0 |
| abstract_inverted_index.approaches, | 156 |
| abstract_inverted_index.centralized | 74 |
| abstract_inverted_index.complexity. | 170 |
| abstract_inverted_index.contrastive | 116 |
| abstract_inverted_index.directions. | 215 |
| abstract_inverted_index.effectively | 91 |
| abstract_inverted_index.performance | 166 |
| abstract_inverted_index.recommender | 68, 151, 206 |
| abstract_inverted_index.scalability | 141 |
| abstract_inverted_index.sequential, | 79 |
| abstract_inverted_index.significant | 55 |
| abstract_inverted_index.structures. | 82 |
| abstract_inverted_index.techniques, | 160 |
| abstract_inverted_index.techniques. | 71 |
| abstract_inverted_index.enhancement. | 184 |
| abstract_inverted_index.highlighting | 209 |
| abstract_inverted_index.matrix-based | 84 |
| abstract_inverted_index.particularly | 95 |
| abstract_inverted_index.performance. | 43 |
| abstract_inverted_index.personalized | 12 |
| abstract_inverted_index.preferences, | 94 |
| abstract_inverted_index.quantization | 162 |
| abstract_inverted_index.Additionally, | 171 |
| abstract_inverted_index.architectures | 190 |
| abstract_inverted_index.collaborative | 86 |
| abstract_inverted_index.comprehensive | 62 |
| abstract_inverted_index.computational | 169 |
| abstract_inverted_index.environments. | 99 |
| abstract_inverted_index.methodologies, | 192 |
| abstract_inverted_index.recommendation | 42 |
| abstract_inverted_index.relationships, | 53, 131 |
| abstract_inverted_index.revolutionized | 47 |
| abstract_inverted_index.low-dimensional | 35 |
| abstract_inverted_index.recommendations | 13 |
| abstract_inverted_index.self-supervised | 112, 135 |
| abstract_inverted_index.graph-structured | 121 |
| abstract_inverted_index.high-dimensional | 25 |
| abstract_inverted_index.state-of-the-art | 202 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |