Embedding of Unimodular Row Vectors Article Swipe
Tao Wu
,
Jinwang Liu
,
Jiancheng Guan
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/math11183911
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/math11183911
In this paper, we mainly study the embedding problem of unimodular row vectors, focusing on avoiding the identification of polynomial zeros. We investigate the existence of the minimal syzygy module of the ZLP polynomial matrix and demonstrate that the minimal syzygy module has structural properties that are similar to the fundamental solution system of homogeneous linear equations found in linear algebra. Finally, we provide several embedding methods for unimodular vectors in certain cases.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math11183911
- https://www.mdpi.com/2227-7390/11/18/3911/pdf?version=1694779884
- OA Status
- gold
- Cited By
- 1
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386778873
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386778873Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math11183911Digital Object Identifier
- Title
-
Embedding of Unimodular Row VectorsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-14Full publication date if available
- Authors
-
Tao Wu, Jinwang Liu, Jiancheng GuanList of authors in order
- Landing page
-
https://doi.org/10.3390/math11183911Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/11/18/3911/pdf?version=1694779884Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/11/18/3911/pdf?version=1694779884Direct OA link when available
- Concepts
-
Unimodular matrix, Hilbert's syzygy theorem, Embedding, Mathematics, Homogeneous, Homogeneous polynomial, Pure mathematics, Polynomial, Discrete mathematics, Algebra over a field, Combinatorics, Matrix polynomial, Computer science, Mathematical analysis, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386778873 |
|---|---|
| doi | https://doi.org/10.3390/math11183911 |
| ids.doi | https://doi.org/10.3390/math11183911 |
| ids.openalex | https://openalex.org/W4386778873 |
| fwci | 0.3089612 |
| type | article |
| title | Embedding of Unimodular Row Vectors |
| awards[0].id | https://openalex.org/G5151896233 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 12271154 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G7030688237 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 12371507 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G1624786840 |
| awards[2].funder_id | https://openalex.org/F4320322843 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2023JJ40275 |
| awards[2].funder_display_name | Natural Science Foundation of Hunan Province |
| awards[3].id | https://openalex.org/G5960889554 |
| awards[3].funder_id | https://openalex.org/F4320322843 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2022JJ30234 |
| awards[3].funder_display_name | Natural Science Foundation of Hunan Province |
| awards[4].id | https://openalex.org/G6455544819 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 12201204 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| awards[5].id | https://openalex.org/G7966754288 |
| awards[5].funder_id | https://openalex.org/F4320321001 |
| awards[5].display_name | |
| awards[5].funder_award_id | 11971161 |
| awards[5].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 18 |
| biblio.volume | 11 |
| biblio.last_page | 3911 |
| biblio.first_page | 3911 |
| topics[0].id | https://openalex.org/T11435 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Polynomial and algebraic computation |
| topics[1].id | https://openalex.org/T11130 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9878000020980835 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Coding theory and cryptography |
| topics[2].id | https://openalex.org/T10974 |
| topics[2].field.id | https://openalex.org/fields/14 |
| topics[2].field.display_name | Business, Management and Accounting |
| topics[2].score | 0.9847999811172485 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1404 |
| topics[2].subfield.display_name | Management Information Systems |
| topics[2].display_name | Advanced Queuing Theory Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322843 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Hunan Province |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C201958917 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9900814294815063 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1367055 |
| concepts[0].display_name | Unimodular matrix |
| concepts[1].id | https://openalex.org/C55101346 |
| concepts[1].level | 2 |
| concepts[1].score | 0.9411538243293762 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q85776755 |
| concepts[1].display_name | Hilbert's syzygy theorem |
| concepts[2].id | https://openalex.org/C41608201 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7989907264709473 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[2].display_name | Embedding |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.664497971534729 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C66882249 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5353145599365234 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q169336 |
| concepts[4].display_name | Homogeneous |
| concepts[5].id | https://openalex.org/C17103678 |
| concepts[5].level | 4 |
| concepts[5].score | 0.4738759696483612 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1474074 |
| concepts[5].display_name | Homogeneous polynomial |
| concepts[6].id | https://openalex.org/C202444582 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4240441918373108 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[6].display_name | Pure mathematics |
| concepts[7].id | https://openalex.org/C90119067 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3471209406852722 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q43260 |
| concepts[7].display_name | Polynomial |
| concepts[8].id | https://openalex.org/C118615104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.341979444026947 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[8].display_name | Discrete mathematics |
| concepts[9].id | https://openalex.org/C136119220 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3395410180091858 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[9].display_name | Algebra over a field |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3271692991256714 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| concepts[11].id | https://openalex.org/C101044782 |
| concepts[11].level | 3 |
| concepts[11].score | 0.27189236879348755 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q6787887 |
| concepts[11].display_name | Matrix polynomial |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.23007553815841675 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.15368369221687317 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.05785343050956726 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/unimodular-matrix |
| keywords[0].score | 0.9900814294815063 |
| keywords[0].display_name | Unimodular matrix |
| keywords[1].id | https://openalex.org/keywords/hilberts-syzygy-theorem |
| keywords[1].score | 0.9411538243293762 |
| keywords[1].display_name | Hilbert's syzygy theorem |
| keywords[2].id | https://openalex.org/keywords/embedding |
| keywords[2].score | 0.7989907264709473 |
| keywords[2].display_name | Embedding |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.664497971534729 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/homogeneous |
| keywords[4].score | 0.5353145599365234 |
| keywords[4].display_name | Homogeneous |
| keywords[5].id | https://openalex.org/keywords/homogeneous-polynomial |
| keywords[5].score | 0.4738759696483612 |
| keywords[5].display_name | Homogeneous polynomial |
| keywords[6].id | https://openalex.org/keywords/pure-mathematics |
| keywords[6].score | 0.4240441918373108 |
| keywords[6].display_name | Pure mathematics |
| keywords[7].id | https://openalex.org/keywords/polynomial |
| keywords[7].score | 0.3471209406852722 |
| keywords[7].display_name | Polynomial |
| keywords[8].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[8].score | 0.341979444026947 |
| keywords[8].display_name | Discrete mathematics |
| keywords[9].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[9].score | 0.3395410180091858 |
| keywords[9].display_name | Algebra over a field |
| keywords[10].id | https://openalex.org/keywords/combinatorics |
| keywords[10].score | 0.3271692991256714 |
| keywords[10].display_name | Combinatorics |
| keywords[11].id | https://openalex.org/keywords/matrix-polynomial |
| keywords[11].score | 0.27189236879348755 |
| keywords[11].display_name | Matrix polynomial |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.23007553815841675 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[13].score | 0.15368369221687317 |
| keywords[13].display_name | Mathematical analysis |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.05785343050956726 |
| keywords[14].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3390/math11183911 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/11/18/3911/pdf?version=1694779884 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math11183911 |
| locations[1].id | pmh:oai:doaj.org/article:617ddfad94af4be7bf174133d01ae10e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 11, Iss 18, p 3911 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/617ddfad94af4be7bf174133d01ae10e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5026224959 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3822-6366 |
| authorships[0].author.display_name | Tao Wu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I121296143 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[0].institutions[0].id | https://openalex.org/I121296143 |
| authorships[0].institutions[0].ror | https://ror.org/02m9vrb24 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I121296143 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hunan University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tao Wu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[1].author.id | https://openalex.org/A5103228907 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jinwang Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I121296143 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[1].institutions[0].id | https://openalex.org/I121296143 |
| authorships[1].institutions[0].ror | https://ror.org/02m9vrb24 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I121296143 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hunan University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinwang Liu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[2].author.id | https://openalex.org/A5025195591 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0418-5378 |
| authorships[2].author.display_name | Jiancheng Guan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I121296143 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[2].institutions[0].id | https://openalex.org/I121296143 |
| authorships[2].institutions[0].ror | https://ror.org/02m9vrb24 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I121296143 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hunan University of Science and Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jiancheng Guan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/11/18/3911/pdf?version=1694779884 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Embedding of Unimodular Row Vectors |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11435 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Polynomial and algebraic computation |
| related_works | https://openalex.org/W4386778873, https://openalex.org/W2054635077, https://openalex.org/W1528809734, https://openalex.org/W2593774687, https://openalex.org/W2949909658, https://openalex.org/W2963009153, https://openalex.org/W1591573900, https://openalex.org/W2157010247, https://openalex.org/W4297963265, https://openalex.org/W2951260603 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/math11183911 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/11/18/3911/pdf?version=1694779884 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math11183911 |
| primary_location.id | doi:10.3390/math11183911 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/11/18/3911/pdf?version=1694779884 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math11183911 |
| publication_date | 2023-09-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2095272465, https://openalex.org/W2037734816, https://openalex.org/W2137174847, https://openalex.org/W2016083683, https://openalex.org/W2109339972, https://openalex.org/W6702167973, https://openalex.org/W2055817410, https://openalex.org/W2769079476, https://openalex.org/W2014820632, https://openalex.org/W6636413478, https://openalex.org/W2089163333, https://openalex.org/W1989917367, https://openalex.org/W6665968007, https://openalex.org/W2080381008, https://openalex.org/W6680894661, https://openalex.org/W2058540481, https://openalex.org/W1998033277, https://openalex.org/W6607029143, https://openalex.org/W1981482848, https://openalex.org/W6695146510, https://openalex.org/W6683565558, https://openalex.org/W2277540571, https://openalex.org/W171488552, https://openalex.org/W2159234002, https://openalex.org/W1605906084, https://openalex.org/W2140901490, https://openalex.org/W2329596566 |
| referenced_works_count | 27 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 21 |
| abstract_inverted_index.in | 58, 70 |
| abstract_inverted_index.of | 9, 18, 25, 30, 53 |
| abstract_inverted_index.on | 14 |
| abstract_inverted_index.to | 48 |
| abstract_inverted_index.we | 3, 62 |
| abstract_inverted_index.ZLP | 32 |
| abstract_inverted_index.and | 35 |
| abstract_inverted_index.are | 46 |
| abstract_inverted_index.for | 67 |
| abstract_inverted_index.has | 42 |
| abstract_inverted_index.row | 11 |
| abstract_inverted_index.the | 6, 16, 23, 26, 31, 38, 49 |
| abstract_inverted_index.that | 37, 45 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.found | 57 |
| abstract_inverted_index.study | 5 |
| abstract_inverted_index.cases. | 72 |
| abstract_inverted_index.linear | 55, 59 |
| abstract_inverted_index.mainly | 4 |
| abstract_inverted_index.matrix | 34 |
| abstract_inverted_index.module | 29, 41 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.system | 52 |
| abstract_inverted_index.syzygy | 28, 40 |
| abstract_inverted_index.zeros. | 20 |
| abstract_inverted_index.certain | 71 |
| abstract_inverted_index.methods | 66 |
| abstract_inverted_index.minimal | 27, 39 |
| abstract_inverted_index.problem | 8 |
| abstract_inverted_index.provide | 63 |
| abstract_inverted_index.several | 64 |
| abstract_inverted_index.similar | 47 |
| abstract_inverted_index.vectors | 69 |
| abstract_inverted_index.Finally, | 61 |
| abstract_inverted_index.algebra. | 60 |
| abstract_inverted_index.avoiding | 15 |
| abstract_inverted_index.focusing | 13 |
| abstract_inverted_index.solution | 51 |
| abstract_inverted_index.vectors, | 12 |
| abstract_inverted_index.embedding | 7, 65 |
| abstract_inverted_index.equations | 56 |
| abstract_inverted_index.existence | 24 |
| abstract_inverted_index.polynomial | 19, 33 |
| abstract_inverted_index.properties | 44 |
| abstract_inverted_index.structural | 43 |
| abstract_inverted_index.unimodular | 10, 68 |
| abstract_inverted_index.demonstrate | 36 |
| abstract_inverted_index.fundamental | 50 |
| abstract_inverted_index.homogeneous | 54 |
| abstract_inverted_index.investigate | 22 |
| abstract_inverted_index.identification | 17 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5103228907 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I121296143 |
| citation_normalized_percentile.value | 0.58524492 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |