Embedding Signals on Graphs with Unbalanced Diffusion Earth Mover’s Distance Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/icassp43922.2022.9746556
In modern relational machine learning it is common to encounter large graphs that arise via interactions or similarities between observations in many domains. Further, in many cases the target entities for analysis are actually signals on such graphs. We propose to compare and organize such datasets of graph signals by using an earth mover’s distance (EMD) with a geodesic cost over the underlying graph. Typically, EMD is computed by optimizing over the cost of transporting one probability distribution to another over an underlying metric space. However, this is inefficient when computing the EMD between many signals. Here, we propose an unbalanced graph EMD that efficiently embeds the unbalanced EMD on an underlying graph into an L(1) space, whose metric we call unbalanced diffusion earth mover’s distance (UDEMD). Next, we show how this gives distances between graph signals that are robust to noise. Finally, we apply this to organizing patients based on clinical notes, embedding cells modeled as signals on a gene graph, and organizing genes modeled as signals over a large cell graph. In each case, we show that UDEMD-based embeddings find accurate distances that are highly efficient compared to other methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icassp43922.2022.9746556
- OA Status
- green
- Cited By
- 7
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225277649
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225277649Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icassp43922.2022.9746556Digital Object Identifier
- Title
-
Embedding Signals on Graphs with Unbalanced Diffusion Earth Mover’s DistanceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-27Full publication date if available
- Authors
-
Alexander Tong, Guillaume Huguet, Dennis Shung, Amine Natik, Manik Kuchroo, Guillaume Lajoie, Guy Wolf, Smita KrishnaswamyList of authors in order
- Landing page
-
https://doi.org/10.1109/icassp43922.2022.9746556Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/9828741Direct OA link when available
- Concepts
-
Earth mover's distance, Embedding, Computer science, Geodesic, Graph embedding, Graph, Theoretical computer science, Probability distribution, Metric space, Algorithm, Artificial intelligence, Mathematics, Discrete mathematics, Mathematical analysis, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 2, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225277649 |
|---|---|
| doi | https://doi.org/10.1109/icassp43922.2022.9746556 |
| ids.doi | https://doi.org/10.1109/icassp43922.2022.9746556 |
| ids.openalex | https://openalex.org/W4225277649 |
| fwci | 3.55783958 |
| type | article |
| title | Embedding Signals on Graphs with Unbalanced Diffusion Earth Mover’s Distance |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10887 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Bioinformatics and Genomic Networks |
| topics[1].id | https://openalex.org/T10885 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene expression and cancer classification |
| topics[2].id | https://openalex.org/T11273 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9724000096321106 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Graph Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C82668687 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7578074932098389 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3046456 |
| concepts[0].display_name | Earth mover's distance |
| concepts[1].id | https://openalex.org/C41608201 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6991535425186157 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[1].display_name | Embedding |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.615400493144989 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C165818556 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5978997945785522 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q213488 |
| concepts[3].display_name | Geodesic |
| concepts[4].id | https://openalex.org/C75564084 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5406541228294373 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5597085 |
| concepts[4].display_name | Graph embedding |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5278396606445312 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C80444323 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5146170854568481 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[6].display_name | Theoretical computer science |
| concepts[7].id | https://openalex.org/C149441793 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45189547538757324 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q200726 |
| concepts[7].display_name | Probability distribution |
| concepts[8].id | https://openalex.org/C198043062 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4287911057472229 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q180953 |
| concepts[8].display_name | Metric space |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4180842638015747 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.38993167877197266 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2657719850540161 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C118615104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1906318962574005 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[12].display_name | Discrete mathematics |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/earth-movers-distance |
| keywords[0].score | 0.7578074932098389 |
| keywords[0].display_name | Earth mover's distance |
| keywords[1].id | https://openalex.org/keywords/embedding |
| keywords[1].score | 0.6991535425186157 |
| keywords[1].display_name | Embedding |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.615400493144989 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/geodesic |
| keywords[3].score | 0.5978997945785522 |
| keywords[3].display_name | Geodesic |
| keywords[4].id | https://openalex.org/keywords/graph-embedding |
| keywords[4].score | 0.5406541228294373 |
| keywords[4].display_name | Graph embedding |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.5278396606445312 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[6].score | 0.5146170854568481 |
| keywords[6].display_name | Theoretical computer science |
| keywords[7].id | https://openalex.org/keywords/probability-distribution |
| keywords[7].score | 0.45189547538757324 |
| keywords[7].display_name | Probability distribution |
| keywords[8].id | https://openalex.org/keywords/metric-space |
| keywords[8].score | 0.4287911057472229 |
| keywords[8].display_name | Metric space |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.4180842638015747 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.38993167877197266 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2657719850540161 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[12].score | 0.1906318962574005 |
| keywords[12].display_name | Discrete mathematics |
| language | en |
| locations[0].id | doi:10.1109/icassp43922.2022.9746556 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363607702 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| locations[0].landing_page_url | https://doi.org/10.1109/icassp43922.2022.9746556 |
| locations[1].id | pmh:oai:pubmedcentral.nih.gov:9828741 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S2764455111 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed Central |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Proc IEEE Int Conf Acoust Speech Signal Process |
| locations[1].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9828741 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5053568123 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2031-4096 |
| authorships[0].author.display_name | Alexander Tong |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. of Comp. Sci., Yale University, New Haven, CT, USA |
| authorships[0].institutions[0].id | https://openalex.org/I32971472 |
| authorships[0].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Yale University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alexander Tong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. of Comp. Sci., Yale University, New Haven, CT, USA |
| authorships[1].author.id | https://openalex.org/A5006770516 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2126-5000 |
| authorships[1].author.display_name | Guillaume Huguet |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210164802 |
| authorships[1].affiliations[0].raw_affiliation_string | Université de Montréal,Dept. of Math. & Stat.; Mila – Quebec AI Institute,Montreal,QC,Canada |
| authorships[1].institutions[0].id | https://openalex.org/I4210164802 |
| authorships[1].institutions[0].ror | https://ror.org/05c22rx21 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210164802 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | Mila - Quebec Artificial Intelligence Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guillaume Huguet |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Université de Montréal,Dept. of Math. & Stat.; Mila – Quebec AI Institute,Montreal,QC,Canada |
| authorships[2].author.id | https://openalex.org/A5078143266 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8226-1842 |
| authorships[2].author.display_name | Dennis Shung |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept. of Medicine, Yale University, New Haven, CT, USA |
| authorships[2].institutions[0].id | https://openalex.org/I32971472 |
| authorships[2].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Yale University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dennis Shung |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept. of Medicine, Yale University, New Haven, CT, USA |
| authorships[3].author.id | https://openalex.org/A5066867897 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Amine Natik |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210164802 |
| authorships[3].affiliations[0].raw_affiliation_string | Université de Montréal,Dept. of Math. & Stat.; Mila – Quebec AI Institute,Montreal,QC,Canada |
| authorships[3].institutions[0].id | https://openalex.org/I4210164802 |
| authorships[3].institutions[0].ror | https://ror.org/05c22rx21 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210164802 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | Mila - Quebec Artificial Intelligence Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Amine Natik |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Université de Montréal,Dept. of Math. & Stat.; Mila – Quebec AI Institute,Montreal,QC,Canada |
| authorships[4].author.id | https://openalex.org/A5044308510 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7512-9739 |
| authorships[4].author.display_name | Manik Kuchroo |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[4].affiliations[0].raw_affiliation_string | Dept. of Genetics, Yale University, New Haven, CT, USA |
| authorships[4].institutions[0].id | https://openalex.org/I32971472 |
| authorships[4].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Yale University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Manik Kuchroo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Dept. of Genetics, Yale University, New Haven, CT, USA |
| authorships[5].author.id | https://openalex.org/A5043037494 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2730-7291 |
| authorships[5].author.display_name | Guillaume Lajoie |
| authorships[5].countries | CA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210164802 |
| authorships[5].affiliations[0].raw_affiliation_string | Université de Montréal,Dept. of Math. & Stat.; Mila – Quebec AI Institute,Montreal,QC,Canada |
| authorships[5].institutions[0].id | https://openalex.org/I4210164802 |
| authorships[5].institutions[0].ror | https://ror.org/05c22rx21 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210164802 |
| authorships[5].institutions[0].country_code | CA |
| authorships[5].institutions[0].display_name | Mila - Quebec Artificial Intelligence Institute |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Guillaume Lajoie |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Université de Montréal,Dept. of Math. & Stat.; Mila – Quebec AI Institute,Montreal,QC,Canada |
| authorships[6].author.id | https://openalex.org/A5005117825 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6740-059X |
| authorships[6].author.display_name | Guy Wolf |
| authorships[6].countries | CA |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210164802 |
| authorships[6].affiliations[0].raw_affiliation_string | Université de Montréal,Dept. of Math. & Stat.; Mila – Quebec AI Institute,Montreal,QC,Canada |
| authorships[6].institutions[0].id | https://openalex.org/I4210164802 |
| authorships[6].institutions[0].ror | https://ror.org/05c22rx21 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210164802 |
| authorships[6].institutions[0].country_code | CA |
| authorships[6].institutions[0].display_name | Mila - Quebec Artificial Intelligence Institute |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Guy Wolf |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Université de Montréal,Dept. of Math. & Stat.; Mila – Quebec AI Institute,Montreal,QC,Canada |
| authorships[7].author.id | https://openalex.org/A5045475274 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5823-1985 |
| authorships[7].author.display_name | Smita Krishnaswamy |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[7].affiliations[0].raw_affiliation_string | Dept. of Comp. Sci., Yale University, New Haven, CT, USA |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I32971472 |
| authorships[7].affiliations[1].raw_affiliation_string | Dept. of Genetics, Yale University, New Haven, CT, USA |
| authorships[7].institutions[0].id | https://openalex.org/I32971472 |
| authorships[7].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Yale University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Smita Krishnaswamy |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Dept. of Comp. Sci., Yale University, New Haven, CT, USA, Dept. of Genetics, Yale University, New Haven, CT, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9828741 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-04T00:00:00 |
| display_name | Embedding Signals on Graphs with Unbalanced Diffusion Earth Mover’s Distance |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10887 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Bioinformatics and Genomic Networks |
| related_works | https://openalex.org/W2015573458, https://openalex.org/W2125221595, https://openalex.org/W1540114044, https://openalex.org/W1971648542, https://openalex.org/W1978591761, https://openalex.org/W2049988766, https://openalex.org/W2941285539, https://openalex.org/W4287661821, https://openalex.org/W2516227785, https://openalex.org/W2343770103 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:9828741 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Proc IEEE Int Conf Acoust Speech Signal Process |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9828741 |
| primary_location.id | doi:10.1109/icassp43922.2022.9746556 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363607702 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| primary_location.landing_page_url | https://doi.org/10.1109/icassp43922.2022.9746556 |
| publication_date | 2022-04-27 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6792101179, https://openalex.org/W6682962330, https://openalex.org/W6779669310, https://openalex.org/W6735913928, https://openalex.org/W3094528781, https://openalex.org/W6783456391, https://openalex.org/W2789285779, https://openalex.org/W2246915724, https://openalex.org/W6792033799, https://openalex.org/W2122402213, https://openalex.org/W2063124015, https://openalex.org/W2951343553, https://openalex.org/W6746313456, https://openalex.org/W6684267655, https://openalex.org/W2137243801, https://openalex.org/W6769366355, https://openalex.org/W6763411132, https://openalex.org/W2793477525, https://openalex.org/W6745847804, https://openalex.org/W2048435560, https://openalex.org/W6769499080, https://openalex.org/W6787167997, https://openalex.org/W2249305365, https://openalex.org/W4210770595, https://openalex.org/W2161401420, https://openalex.org/W2158131535, https://openalex.org/W2979482469, https://openalex.org/W2771035597, https://openalex.org/W3103801447, https://openalex.org/W2963506485, https://openalex.org/W4225277649, https://openalex.org/W4210832122, https://openalex.org/W3092241499, https://openalex.org/W3111722515, https://openalex.org/W4288093972, https://openalex.org/W4288612245, https://openalex.org/W3135516022, https://openalex.org/W4295521014 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 57, 159, 169 |
| abstract_inverted_index.In | 0, 173 |
| abstract_inverted_index.We | 38 |
| abstract_inverted_index.an | 51, 81, 99, 110, 114 |
| abstract_inverted_index.as | 156, 166 |
| abstract_inverted_index.by | 49, 68 |
| abstract_inverted_index.in | 20, 24 |
| abstract_inverted_index.is | 6, 66, 87 |
| abstract_inverted_index.it | 5 |
| abstract_inverted_index.of | 46, 73 |
| abstract_inverted_index.on | 35, 109, 150, 158 |
| abstract_inverted_index.or | 16 |
| abstract_inverted_index.to | 8, 40, 78, 140, 146, 189 |
| abstract_inverted_index.we | 97, 119, 128, 143, 176 |
| abstract_inverted_index.EMD | 65, 92, 102, 108 |
| abstract_inverted_index.and | 42, 162 |
| abstract_inverted_index.are | 32, 138, 185 |
| abstract_inverted_index.for | 30 |
| abstract_inverted_index.how | 130 |
| abstract_inverted_index.one | 75 |
| abstract_inverted_index.the | 27, 61, 71, 91, 106 |
| abstract_inverted_index.via | 14 |
| abstract_inverted_index.L(1) | 115 |
| abstract_inverted_index.call | 120 |
| abstract_inverted_index.cell | 171 |
| abstract_inverted_index.cost | 59, 72 |
| abstract_inverted_index.each | 174 |
| abstract_inverted_index.find | 181 |
| abstract_inverted_index.gene | 160 |
| abstract_inverted_index.into | 113 |
| abstract_inverted_index.many | 21, 25, 94 |
| abstract_inverted_index.over | 60, 70, 80, 168 |
| abstract_inverted_index.show | 129, 177 |
| abstract_inverted_index.such | 36, 44 |
| abstract_inverted_index.that | 12, 103, 137, 178, 184 |
| abstract_inverted_index.this | 86, 131, 145 |
| abstract_inverted_index.when | 89 |
| abstract_inverted_index.with | 56 |
| abstract_inverted_index.(EMD) | 55 |
| abstract_inverted_index.Here, | 96 |
| abstract_inverted_index.Next, | 127 |
| abstract_inverted_index.apply | 144 |
| abstract_inverted_index.arise | 13 |
| abstract_inverted_index.based | 149 |
| abstract_inverted_index.case, | 175 |
| abstract_inverted_index.cases | 26 |
| abstract_inverted_index.cells | 154 |
| abstract_inverted_index.earth | 52, 123 |
| abstract_inverted_index.genes | 164 |
| abstract_inverted_index.gives | 132 |
| abstract_inverted_index.graph | 47, 101, 112, 135 |
| abstract_inverted_index.large | 10, 170 |
| abstract_inverted_index.other | 190 |
| abstract_inverted_index.using | 50 |
| abstract_inverted_index.whose | 117 |
| abstract_inverted_index.common | 7 |
| abstract_inverted_index.embeds | 105 |
| abstract_inverted_index.graph, | 161 |
| abstract_inverted_index.graph. | 63, 172 |
| abstract_inverted_index.graphs | 11 |
| abstract_inverted_index.highly | 186 |
| abstract_inverted_index.metric | 83, 118 |
| abstract_inverted_index.modern | 1 |
| abstract_inverted_index.noise. | 141 |
| abstract_inverted_index.notes, | 152 |
| abstract_inverted_index.robust | 139 |
| abstract_inverted_index.space, | 116 |
| abstract_inverted_index.space. | 84 |
| abstract_inverted_index.target | 28 |
| abstract_inverted_index.another | 79 |
| abstract_inverted_index.between | 18, 93, 134 |
| abstract_inverted_index.compare | 41 |
| abstract_inverted_index.graphs. | 37 |
| abstract_inverted_index.machine | 3 |
| abstract_inverted_index.modeled | 155, 165 |
| abstract_inverted_index.propose | 39, 98 |
| abstract_inverted_index.signals | 34, 48, 136, 157, 167 |
| abstract_inverted_index.(UDEMD). | 126 |
| abstract_inverted_index.Finally, | 142 |
| abstract_inverted_index.Further, | 23 |
| abstract_inverted_index.However, | 85 |
| abstract_inverted_index.accurate | 182 |
| abstract_inverted_index.actually | 33 |
| abstract_inverted_index.analysis | 31 |
| abstract_inverted_index.clinical | 151 |
| abstract_inverted_index.compared | 188 |
| abstract_inverted_index.computed | 67 |
| abstract_inverted_index.datasets | 45 |
| abstract_inverted_index.distance | 54, 125 |
| abstract_inverted_index.domains. | 22 |
| abstract_inverted_index.entities | 29 |
| abstract_inverted_index.geodesic | 58 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.methods. | 191 |
| abstract_inverted_index.organize | 43 |
| abstract_inverted_index.patients | 148 |
| abstract_inverted_index.signals. | 95 |
| abstract_inverted_index.computing | 90 |
| abstract_inverted_index.diffusion | 122 |
| abstract_inverted_index.distances | 133, 183 |
| abstract_inverted_index.efficient | 187 |
| abstract_inverted_index.embedding | 153 |
| abstract_inverted_index.encounter | 9 |
| abstract_inverted_index.mover’s | 53, 124 |
| abstract_inverted_index.Typically, | 64 |
| abstract_inverted_index.embeddings | 180 |
| abstract_inverted_index.optimizing | 69 |
| abstract_inverted_index.organizing | 147, 163 |
| abstract_inverted_index.relational | 2 |
| abstract_inverted_index.unbalanced | 100, 107, 121 |
| abstract_inverted_index.underlying | 62, 82, 111 |
| abstract_inverted_index.UDEMD-based | 179 |
| abstract_inverted_index.efficiently | 104 |
| abstract_inverted_index.inefficient | 88 |
| abstract_inverted_index.probability | 76 |
| abstract_inverted_index.distribution | 77 |
| abstract_inverted_index.interactions | 15 |
| abstract_inverted_index.observations | 19 |
| abstract_inverted_index.similarities | 17 |
| abstract_inverted_index.transporting | 74 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.92698413 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |