Embodied AI with Two Arms: Zero-shot Learning, Safety and Modularity Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.03570
We present an embodied AI system which receives open-ended natural language instructions from a human, and controls two arms to collaboratively accomplish potentially long-horizon tasks over a large workspace. Our system is modular: it deploys state of the art Large Language Models for task planning,Vision-Language models for semantic perception, and Point Cloud transformers for grasping. With semantic and physical safety in mind, these modules are interfaced with a real-time trajectory optimizer and a compliant tracking controller to enable human-robot proximity. We demonstrate performance for the following tasks: bi-arm sorting, bottle opening, and trash disposal tasks. These are done zero-shot where the models used have not been trained with any real world data from this bi-arm robot, scenes or workspace. Composing both learning- and non-learning-based components in a modular fashion with interpretable inputs and outputs allows the user to easily debug points of failures and fragilities. One may also in-place swap modules to improve the robustness of the overall platform, for instance with imitation-learned policies. Please see https://sites.google.com/corp/view/safe-robots .
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.03570
- https://arxiv.org/pdf/2404.03570
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394007645
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394007645Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.03570Digital Object Identifier
- Title
-
Embodied AI with Two Arms: Zero-shot Learning, Safety and ModularityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-04Full publication date if available
- Authors
-
Jake Varley, Sumeet Singh, Deepali Jain, Krzysztof Choromański, Andy Zeng, Somnath Basu Roy Chowdhury, Avinava Dubey, Vikas SindhwaniList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.03570Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.03570Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.03570Direct OA link when available
- Concepts
-
Modularity (biology), Embodied cognition, Zero (linguistics), Shot (pellet), Ground zero, Computer science, Artificial intelligence, Political science, Philosophy, Chemistry, Law, Biology, Linguistics, Organic chemistry, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394007645 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.03570 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.03570 |
| ids.openalex | https://openalex.org/W4394007645 |
| fwci | |
| type | preprint |
| title | Embodied AI with Two Arms: Zero-shot Learning, Safety and Modularity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.772599995136261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779478453 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8687083721160889 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6889748 |
| concepts[0].display_name | Modularity (biology) |
| concepts[1].id | https://openalex.org/C100609095 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7568215727806091 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1335050 |
| concepts[1].display_name | Embodied cognition |
| concepts[2].id | https://openalex.org/C2780813799 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5994166731834412 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3274237 |
| concepts[2].display_name | Zero (linguistics) |
| concepts[3].id | https://openalex.org/C2778344882 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5901452302932739 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[3].display_name | Shot (pellet) |
| concepts[4].id | https://openalex.org/C2780518707 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4306790232658386 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q685332 |
| concepts[4].display_name | Ground zero |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3865565359592438 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3050425052642822 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C17744445 |
| concepts[7].level | 0 |
| concepts[7].score | 0.28159427642822266 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[7].display_name | Political science |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.19582420587539673 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| concepts[9].id | https://openalex.org/C185592680 |
| concepts[9].level | 0 |
| concepts[9].score | 0.10220068693161011 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[9].display_name | Chemistry |
| concepts[10].id | https://openalex.org/C199539241 |
| concepts[10].level | 1 |
| concepts[10].score | 0.09935405850410461 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[10].display_name | Law |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.05858808755874634 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.056926846504211426 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| concepts[13].id | https://openalex.org/C178790620 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[13].display_name | Organic chemistry |
| concepts[14].id | https://openalex.org/C54355233 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[14].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/modularity |
| keywords[0].score | 0.8687083721160889 |
| keywords[0].display_name | Modularity (biology) |
| keywords[1].id | https://openalex.org/keywords/embodied-cognition |
| keywords[1].score | 0.7568215727806091 |
| keywords[1].display_name | Embodied cognition |
| keywords[2].id | https://openalex.org/keywords/zero |
| keywords[2].score | 0.5994166731834412 |
| keywords[2].display_name | Zero (linguistics) |
| keywords[3].id | https://openalex.org/keywords/shot |
| keywords[3].score | 0.5901452302932739 |
| keywords[3].display_name | Shot (pellet) |
| keywords[4].id | https://openalex.org/keywords/ground-zero |
| keywords[4].score | 0.4306790232658386 |
| keywords[4].display_name | Ground zero |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3865565359592438 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3050425052642822 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/political-science |
| keywords[7].score | 0.28159427642822266 |
| keywords[7].display_name | Political science |
| keywords[8].id | https://openalex.org/keywords/philosophy |
| keywords[8].score | 0.19582420587539673 |
| keywords[8].display_name | Philosophy |
| keywords[9].id | https://openalex.org/keywords/chemistry |
| keywords[9].score | 0.10220068693161011 |
| keywords[9].display_name | Chemistry |
| keywords[10].id | https://openalex.org/keywords/law |
| keywords[10].score | 0.09935405850410461 |
| keywords[10].display_name | Law |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.05858808755874634 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/linguistics |
| keywords[12].score | 0.056926846504211426 |
| keywords[12].display_name | Linguistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.03570 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.03570 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.03570 |
| locations[1].id | doi:10.48550/arxiv.2404.03570 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.03570 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5066125048 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jake Varley |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Varley, Jake |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5017822896 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6948-7131 |
| authorships[1].author.display_name | Sumeet Singh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Singh, Sumeet |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016687983 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5315-9814 |
| authorships[2].author.display_name | Deepali Jain |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jain, Deepali |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5031842812 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3626-414X |
| authorships[3].author.display_name | Krzysztof Choromański |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Choromanski, Krzysztof |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5005577303 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4319-2159 |
| authorships[4].author.display_name | Andy Zeng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zeng, Andy |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5017183605 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Somnath Basu Roy Chowdhury |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chowdhury, Somnath Basu Roy |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5047098924 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Avinava Dubey |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dubey, Avinava |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5058073838 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Vikas Sindhwani |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Sindhwani, Vikas |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.03570 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Embodied AI with Two Arms: Zero-shot Learning, Safety and Modularity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.772599995136261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W4300821880, https://openalex.org/W4313594480, https://openalex.org/W1992989480, https://openalex.org/W2285651113, https://openalex.org/W4256031153, https://openalex.org/W3279617, https://openalex.org/W4293365998, https://openalex.org/W2327903337, https://openalex.org/W2768862283, https://openalex.org/W4287625902 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.03570 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.03570 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.03570 |
| primary_location.id | pmh:oai:arXiv.org:2404.03570 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.03570 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.03570 |
| publication_date | 2024-04-04 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.. | 167 |
| abstract_inverted_index.a | 13, 26, 67, 72, 126 |
| abstract_inverted_index.AI | 4 |
| abstract_inverted_index.We | 0, 80 |
| abstract_inverted_index.an | 2 |
| abstract_inverted_index.in | 60, 125 |
| abstract_inverted_index.is | 31 |
| abstract_inverted_index.it | 33 |
| abstract_inverted_index.of | 36, 141, 155 |
| abstract_inverted_index.or | 117 |
| abstract_inverted_index.to | 19, 76, 137, 151 |
| abstract_inverted_index.One | 145 |
| abstract_inverted_index.Our | 29 |
| abstract_inverted_index.and | 15, 49, 57, 71, 91, 122, 132, 143 |
| abstract_inverted_index.any | 108 |
| abstract_inverted_index.are | 64, 96 |
| abstract_inverted_index.art | 38 |
| abstract_inverted_index.for | 42, 46, 53, 83, 159 |
| abstract_inverted_index.may | 146 |
| abstract_inverted_index.not | 104 |
| abstract_inverted_index.see | 165 |
| abstract_inverted_index.the | 37, 84, 100, 135, 153, 156 |
| abstract_inverted_index.two | 17 |
| abstract_inverted_index.With | 55 |
| abstract_inverted_index.also | 147 |
| abstract_inverted_index.arms | 18 |
| abstract_inverted_index.been | 105 |
| abstract_inverted_index.both | 120 |
| abstract_inverted_index.data | 111 |
| abstract_inverted_index.done | 97 |
| abstract_inverted_index.from | 12, 112 |
| abstract_inverted_index.have | 103 |
| abstract_inverted_index.over | 25 |
| abstract_inverted_index.real | 109 |
| abstract_inverted_index.swap | 149 |
| abstract_inverted_index.task | 43 |
| abstract_inverted_index.this | 113 |
| abstract_inverted_index.used | 102 |
| abstract_inverted_index.user | 136 |
| abstract_inverted_index.with | 66, 107, 129, 161 |
| abstract_inverted_index.Cloud | 51 |
| abstract_inverted_index.Large | 39 |
| abstract_inverted_index.Point | 50 |
| abstract_inverted_index.These | 95 |
| abstract_inverted_index.debug | 139 |
| abstract_inverted_index.large | 27 |
| abstract_inverted_index.mind, | 61 |
| abstract_inverted_index.state | 35 |
| abstract_inverted_index.tasks | 24 |
| abstract_inverted_index.these | 62 |
| abstract_inverted_index.trash | 92 |
| abstract_inverted_index.where | 99 |
| abstract_inverted_index.which | 6 |
| abstract_inverted_index.world | 110 |
| abstract_inverted_index.Models | 41 |
| abstract_inverted_index.Please | 164 |
| abstract_inverted_index.allows | 134 |
| abstract_inverted_index.bi-arm | 87, 114 |
| abstract_inverted_index.bottle | 89 |
| abstract_inverted_index.easily | 138 |
| abstract_inverted_index.enable | 77 |
| abstract_inverted_index.human, | 14 |
| abstract_inverted_index.inputs | 131 |
| abstract_inverted_index.models | 45, 101 |
| abstract_inverted_index.points | 140 |
| abstract_inverted_index.robot, | 115 |
| abstract_inverted_index.safety | 59 |
| abstract_inverted_index.scenes | 116 |
| abstract_inverted_index.system | 5, 30 |
| abstract_inverted_index.tasks. | 94 |
| abstract_inverted_index.tasks: | 86 |
| abstract_inverted_index.deploys | 34 |
| abstract_inverted_index.fashion | 128 |
| abstract_inverted_index.improve | 152 |
| abstract_inverted_index.modular | 127 |
| abstract_inverted_index.modules | 63, 150 |
| abstract_inverted_index.natural | 9 |
| abstract_inverted_index.outputs | 133 |
| abstract_inverted_index.overall | 157 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.trained | 106 |
| abstract_inverted_index.Language | 40 |
| abstract_inverted_index.controls | 16 |
| abstract_inverted_index.disposal | 93 |
| abstract_inverted_index.embodied | 3 |
| abstract_inverted_index.failures | 142 |
| abstract_inverted_index.in-place | 148 |
| abstract_inverted_index.instance | 160 |
| abstract_inverted_index.language | 10 |
| abstract_inverted_index.modular: | 32 |
| abstract_inverted_index.opening, | 90 |
| abstract_inverted_index.physical | 58 |
| abstract_inverted_index.receives | 7 |
| abstract_inverted_index.semantic | 47, 56 |
| abstract_inverted_index.sorting, | 88 |
| abstract_inverted_index.tracking | 74 |
| abstract_inverted_index.Composing | 119 |
| abstract_inverted_index.compliant | 73 |
| abstract_inverted_index.following | 85 |
| abstract_inverted_index.grasping. | 54 |
| abstract_inverted_index.learning- | 121 |
| abstract_inverted_index.optimizer | 70 |
| abstract_inverted_index.platform, | 158 |
| abstract_inverted_index.policies. | 163 |
| abstract_inverted_index.real-time | 68 |
| abstract_inverted_index.zero-shot | 98 |
| abstract_inverted_index.accomplish | 21 |
| abstract_inverted_index.components | 124 |
| abstract_inverted_index.controller | 75 |
| abstract_inverted_index.interfaced | 65 |
| abstract_inverted_index.open-ended | 8 |
| abstract_inverted_index.proximity. | 79 |
| abstract_inverted_index.robustness | 154 |
| abstract_inverted_index.trajectory | 69 |
| abstract_inverted_index.workspace. | 28, 118 |
| abstract_inverted_index.demonstrate | 81 |
| abstract_inverted_index.human-robot | 78 |
| abstract_inverted_index.perception, | 48 |
| abstract_inverted_index.performance | 82 |
| abstract_inverted_index.potentially | 22 |
| abstract_inverted_index.fragilities. | 144 |
| abstract_inverted_index.instructions | 11 |
| abstract_inverted_index.long-horizon | 23 |
| abstract_inverted_index.transformers | 52 |
| abstract_inverted_index.interpretable | 130 |
| abstract_inverted_index.collaboratively | 20 |
| abstract_inverted_index.imitation-learned | 162 |
| abstract_inverted_index.non-learning-based | 123 |
| abstract_inverted_index.planning,Vision-Language | 44 |
| abstract_inverted_index.https://sites.google.com/corp/view/safe-robots | 166 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |