Embodied BERT: A Transformer Model for Embodied, Language-guided Visual Task Completion Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2108.04927
Language-guided robots performing home and office tasks must navigate in and interact with the world. Grounding language instructions against visual observations and actions to take in an environment is an open challenge. We present Embodied BERT (EmBERT), a transformer-based model which can attend to high-dimensional, multi-modal inputs across long temporal horizons for language-conditioned task completion. Additionally, we bridge the gap between successful object-centric navigation models used for non-interactive agents and the language-guided visual task completion benchmark, ALFRED, by introducing object navigation targets for EmBERT training. We achieve competitive performance on the ALFRED benchmark, and EmBERT marks the first transformer-based model to successfully handle the long-horizon, dense, multi-modal histories of ALFRED, and the first ALFRED model to utilize object-centric navigation targets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2108.04927
- https://arxiv.org/pdf/2108.04927
- OA Status
- green
- Cited By
- 5
- References
- 82
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3189250028
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3189250028Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2108.04927Digital Object Identifier
- Title
-
Embodied BERT: A Transformer Model for Embodied, Language-guided Visual Task CompletionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-10Full publication date if available
- Authors
-
Alessandro Suglia, Qiaozi Gao, Jesse Thomason, Govind Thattai, Gaurav S. SukhatmeList of authors in order
- Landing page
-
https://arxiv.org/abs/2108.04927Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2108.04927Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2108.04927Direct OA link when available
- Concepts
-
Embodied cognition, Transformer, Computer science, Robot, Language understanding, Task (project management), Benchmark (surveying), Artificial intelligence, Language model, Human–computer interaction, Bridge (graph theory), Engineering, Voltage, Geography, Geodesy, Medicine, Systems engineering, Electrical engineering, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
82Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3189250028 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2108.04927 |
| ids.doi | https://doi.org/10.48550/arxiv.2108.04927 |
| ids.mag | 3189250028 |
| ids.openalex | https://openalex.org/W3189250028 |
| fwci | |
| type | preprint |
| title | Embodied BERT: A Transformer Model for Embodied, Language-guided Visual Task Completion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C100609095 |
| concepts[0].level | 2 |
| concepts[0].score | 0.834644615650177 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1335050 |
| concepts[0].display_name | Embodied cognition |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7731671333312988 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7461982369422913 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C90509273 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5349276065826416 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[3].display_name | Robot |
| concepts[4].id | https://openalex.org/C2983448237 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5256713032722473 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1078276 |
| concepts[4].display_name | Language understanding |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5239796042442322 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C185798385 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5038177371025085 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[6].display_name | Benchmark (surveying) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.48784446716308594 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C137293760 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4384080767631531 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[8].display_name | Language model |
| concepts[9].id | https://openalex.org/C107457646 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4379575252532959 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[9].display_name | Human–computer interaction |
| concepts[10].id | https://openalex.org/C100776233 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43116265535354614 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2532492 |
| concepts[10].display_name | Bridge (graph theory) |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1534346640110016 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C165801399 |
| concepts[12].level | 2 |
| concepts[12].score | 0.06539630889892578 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[12].display_name | Voltage |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C13280743 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[14].display_name | Geodesy |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C201995342 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[16].display_name | Systems engineering |
| concepts[17].id | https://openalex.org/C119599485 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[17].display_name | Electrical engineering |
| concepts[18].id | https://openalex.org/C126322002 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[18].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/embodied-cognition |
| keywords[0].score | 0.834644615650177 |
| keywords[0].display_name | Embodied cognition |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.7731671333312988 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7461982369422913 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/robot |
| keywords[3].score | 0.5349276065826416 |
| keywords[3].display_name | Robot |
| keywords[4].id | https://openalex.org/keywords/language-understanding |
| keywords[4].score | 0.5256713032722473 |
| keywords[4].display_name | Language understanding |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.5239796042442322 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/benchmark |
| keywords[6].score | 0.5038177371025085 |
| keywords[6].display_name | Benchmark (surveying) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.48784446716308594 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/language-model |
| keywords[8].score | 0.4384080767631531 |
| keywords[8].display_name | Language model |
| keywords[9].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[9].score | 0.4379575252532959 |
| keywords[9].display_name | Human–computer interaction |
| keywords[10].id | https://openalex.org/keywords/bridge |
| keywords[10].score | 0.43116265535354614 |
| keywords[10].display_name | Bridge (graph theory) |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.1534346640110016 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/voltage |
| keywords[12].score | 0.06539630889892578 |
| keywords[12].display_name | Voltage |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2108.04927 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2108.04927 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2108.04927 |
| locations[1].id | mag:3189250028 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/2108.04927 |
| locations[2].id | doi:10.48550/arxiv.2108.04927 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2108.04927 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5010504829 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3177-5197 |
| authorships[0].author.display_name | Alessandro Suglia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alessandro Suglia |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077622605 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5403-0796 |
| authorships[1].author.display_name | Qiaozi Gao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qiaozi Gao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5108062941 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9199-0633 |
| authorships[2].author.display_name | Jesse Thomason |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jesse Thomason |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5088771920 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-1010-8896 |
| authorships[3].author.display_name | Govind Thattai |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Govind Thattai |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5077367921 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2408-474X |
| authorships[4].author.display_name | Gaurav S. Sukhatme |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Gaurav Sukhatme |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2108.04927 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Embodied BERT: A Transformer Model for Embodied, Language-guided Visual Task Completion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W3194493071, https://openalex.org/W3203338521, https://openalex.org/W3118683362, https://openalex.org/W3209856437, https://openalex.org/W3161995346, https://openalex.org/W2229480318, https://openalex.org/W2963447367, https://openalex.org/W3164900052, https://openalex.org/W2963575117, https://openalex.org/W3205639482, https://openalex.org/W1533903473, https://openalex.org/W3046140993, https://openalex.org/W2767661932, https://openalex.org/W2975395092, https://openalex.org/W2963349093, https://openalex.org/W2909716594, https://openalex.org/W2966966766, https://openalex.org/W3124035587, https://openalex.org/W3155088566, https://openalex.org/W2116377670 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2108.04927 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2108.04927 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2108.04927 |
| primary_location.id | pmh:oai:arXiv.org:2108.04927 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2108.04927 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2108.04927 |
| publication_date | 2021-08-10 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2118781169, https://openalex.org/W3016923549, https://openalex.org/W3112356180, https://openalex.org/W3108144224, https://openalex.org/W3135367836, https://openalex.org/W3034758614, https://openalex.org/W3205013565, https://openalex.org/W2899235916, https://openalex.org/W1602500555, https://openalex.org/W3113184484, https://openalex.org/W3003205975, https://openalex.org/W3107069568, https://openalex.org/W3020712669, https://openalex.org/W3034723486, https://openalex.org/W3029418112, https://openalex.org/W2236233024, https://openalex.org/W3101009265, https://openalex.org/W2898825290, https://openalex.org/W3204201015, https://openalex.org/W2885804027, https://openalex.org/W2963748441, https://openalex.org/W2293350124, https://openalex.org/W2963800628, https://openalex.org/W3095921605, https://openalex.org/W2799002257, https://openalex.org/W2899663614, https://openalex.org/W2122398932, https://openalex.org/W3080215814, https://openalex.org/W1136193735, https://openalex.org/W3166792158, https://openalex.org/W3173781631, https://openalex.org/W3036497058, https://openalex.org/W2949888546, https://openalex.org/W3197445977, https://openalex.org/W2251353663, https://openalex.org/W3025552214, https://openalex.org/W2970608575, https://openalex.org/W1980491396, https://openalex.org/W3133495883, https://openalex.org/W3023306062, https://openalex.org/W2964110616, https://openalex.org/W2948384082, https://openalex.org/W2194775991, https://openalex.org/W2950541952, https://openalex.org/W2525778437, https://openalex.org/W2016589492, https://openalex.org/W2963341956, https://openalex.org/W2776202271, https://openalex.org/W3179326652, https://openalex.org/W2070338807, https://openalex.org/W2963403868, https://openalex.org/W2962789679, https://openalex.org/W3090098073, https://openalex.org/W2793978524, https://openalex.org/W2879390606, https://openalex.org/W3090449556, https://openalex.org/W2886641317, https://openalex.org/W2962684798, https://openalex.org/W3120543233, https://openalex.org/W3169306793, https://openalex.org/W1978289112, https://openalex.org/W3008329436, https://openalex.org/W3034578524, https://openalex.org/W3110824791, https://openalex.org/W2969862959, https://openalex.org/W2835434549, https://openalex.org/W2574893693, https://openalex.org/W3030193665, https://openalex.org/W3097484130, https://openalex.org/W2997591391, https://openalex.org/W3205276578, https://openalex.org/W3015468748, https://openalex.org/W3100923070, https://openalex.org/W2896739098, https://openalex.org/W2963902314, https://openalex.org/W2774005037, https://openalex.org/W3021013305, https://openalex.org/W3188987547, https://openalex.org/W2963150697, https://openalex.org/W3113968666, https://openalex.org/W2963726321, https://openalex.org/W3176974620 |
| referenced_works_count | 82 |
| abstract_inverted_index.a | 37 |
| abstract_inverted_index.We | 32, 85 |
| abstract_inverted_index.an | 26, 29 |
| abstract_inverted_index.by | 77 |
| abstract_inverted_index.in | 9, 25 |
| abstract_inverted_index.is | 28 |
| abstract_inverted_index.of | 108 |
| abstract_inverted_index.on | 89 |
| abstract_inverted_index.to | 23, 43, 100, 115 |
| abstract_inverted_index.we | 56 |
| abstract_inverted_index.and | 4, 10, 21, 69, 93, 110 |
| abstract_inverted_index.can | 41 |
| abstract_inverted_index.for | 51, 66, 82 |
| abstract_inverted_index.gap | 59 |
| abstract_inverted_index.the | 13, 58, 70, 90, 96, 103, 111 |
| abstract_inverted_index.BERT | 35 |
| abstract_inverted_index.home | 3 |
| abstract_inverted_index.long | 48 |
| abstract_inverted_index.must | 7 |
| abstract_inverted_index.open | 30 |
| abstract_inverted_index.take | 24 |
| abstract_inverted_index.task | 53, 73 |
| abstract_inverted_index.used | 65 |
| abstract_inverted_index.with | 12 |
| abstract_inverted_index.first | 97, 112 |
| abstract_inverted_index.marks | 95 |
| abstract_inverted_index.model | 39, 99, 114 |
| abstract_inverted_index.tasks | 6 |
| abstract_inverted_index.which | 40 |
| abstract_inverted_index.ALFRED | 91, 113 |
| abstract_inverted_index.EmBERT | 83, 94 |
| abstract_inverted_index.across | 47 |
| abstract_inverted_index.agents | 68 |
| abstract_inverted_index.attend | 42 |
| abstract_inverted_index.bridge | 57 |
| abstract_inverted_index.dense, | 105 |
| abstract_inverted_index.handle | 102 |
| abstract_inverted_index.inputs | 46 |
| abstract_inverted_index.models | 64 |
| abstract_inverted_index.object | 79 |
| abstract_inverted_index.office | 5 |
| abstract_inverted_index.robots | 1 |
| abstract_inverted_index.visual | 19, 72 |
| abstract_inverted_index.world. | 14 |
| abstract_inverted_index.ALFRED, | 76, 109 |
| abstract_inverted_index.achieve | 86 |
| abstract_inverted_index.actions | 22 |
| abstract_inverted_index.against | 18 |
| abstract_inverted_index.between | 60 |
| abstract_inverted_index.present | 33 |
| abstract_inverted_index.targets | 81 |
| abstract_inverted_index.utilize | 116 |
| abstract_inverted_index.Embodied | 34 |
| abstract_inverted_index.horizons | 50 |
| abstract_inverted_index.interact | 11 |
| abstract_inverted_index.language | 16 |
| abstract_inverted_index.navigate | 8 |
| abstract_inverted_index.targets. | 119 |
| abstract_inverted_index.temporal | 49 |
| abstract_inverted_index.(EmBERT), | 36 |
| abstract_inverted_index.Grounding | 15 |
| abstract_inverted_index.histories | 107 |
| abstract_inverted_index.training. | 84 |
| abstract_inverted_index.benchmark, | 75, 92 |
| abstract_inverted_index.challenge. | 31 |
| abstract_inverted_index.completion | 74 |
| abstract_inverted_index.navigation | 63, 80, 118 |
| abstract_inverted_index.performing | 2 |
| abstract_inverted_index.successful | 61 |
| abstract_inverted_index.competitive | 87 |
| abstract_inverted_index.completion. | 54 |
| abstract_inverted_index.environment | 27 |
| abstract_inverted_index.introducing | 78 |
| abstract_inverted_index.multi-modal | 45, 106 |
| abstract_inverted_index.performance | 88 |
| abstract_inverted_index.instructions | 17 |
| abstract_inverted_index.observations | 20 |
| abstract_inverted_index.successfully | 101 |
| abstract_inverted_index.Additionally, | 55 |
| abstract_inverted_index.long-horizon, | 104 |
| abstract_inverted_index.object-centric | 62, 117 |
| abstract_inverted_index.Language-guided | 0 |
| abstract_inverted_index.language-guided | 71 |
| abstract_inverted_index.non-interactive | 67 |
| abstract_inverted_index.high-dimensional, | 44 |
| abstract_inverted_index.transformer-based | 38, 98 |
| abstract_inverted_index.language-conditioned | 52 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |