Emotion Detection in Speech Using Lightweight and Transformer-Based Models: A Comparative and Ablation Study Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.00402
Emotion recognition from speech plays a vital role in the development of empathetic human-computer interaction systems. This paper presents a comparative analysis of lightweight transformer-based models, DistilHuBERT and PaSST, by classifying six core emotions from the CREMA-D dataset. We benchmark their performance against a traditional CNN-LSTM baseline model using MFCC features. DistilHuBERT demonstrates superior accuracy (70.64%) and F1 score (70.36%) while maintaining an exceptionally small model size (0.02 MB), outperforming both PaSST and the baseline. Furthermore, we conducted an ablation study on three variants of the PaSST, Linear, MLP, and Attentive Pooling heads, to understand the effect of classification head architecture on model performance. Our results indicate that PaSST with an MLP head yields the best performance among its variants but still falls short of DistilHuBERT. Among the emotion classes, angry is consistently the most accurately detected, while disgust remains the most challenging. These findings suggest that lightweight transformers like DistilHuBERT offer a compelling solution for real-time speech emotion recognition on edge devices. The code is available at: https://github.com/luckymaduabuchi/Emotion-detection-.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.00402
- https://arxiv.org/pdf/2511.00402
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415937535
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415937535Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.00402Digital Object Identifier
- Title
-
Emotion Detection in Speech Using Lightweight and Transformer-Based Models: A Comparative and Ablation StudyWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-01Full publication date if available
- Authors
-
Lucky Onyekwelu-Udoka, Md Shafiqul Islam, Mahbub HasanList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.00402Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.00402Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.00402Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415937535 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.00402 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.00402 |
| ids.openalex | https://openalex.org/W4415937535 |
| fwci | |
| type | preprint |
| title | Emotion Detection in Speech Using Lightweight and Transformer-Based Models: A Comparative and Ablation Study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.00402 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.00402 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.00402 |
| locations[1].id | doi:10.48550/arxiv.2511.00402 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.00402 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5117410574 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Lucky Onyekwelu-Udoka |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Onyekwelu-Udoka, Lucky |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5083456021 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1162-7023 |
| authorships[1].author.display_name | Md Shafiqul Islam |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Islam, Md Shafiqul |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5091328918 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3954-8500 |
| authorships[2].author.display_name | Mahbub Hasan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Hasan, Md Shahedul |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.00402 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-05T00:00:00 |
| display_name | Emotion Detection in Speech Using Lightweight and Transformer-Based Models: A Comparative and Ablation Study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.00402 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.00402 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.00402 |
| primary_location.id | pmh:oai:arXiv.org:2511.00402 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.00402 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.00402 |
| publication_date | 2025-11-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 19, 43, 152 |
| abstract_inverted_index.F1 | 57 |
| abstract_inverted_index.We | 38 |
| abstract_inverted_index.an | 62, 78, 110 |
| abstract_inverted_index.by | 29 |
| abstract_inverted_index.in | 8 |
| abstract_inverted_index.is | 131, 165 |
| abstract_inverted_index.of | 11, 22, 84, 97, 124 |
| abstract_inverted_index.on | 81, 101, 160 |
| abstract_inverted_index.to | 93 |
| abstract_inverted_index.we | 76 |
| abstract_inverted_index.MLP | 111 |
| abstract_inverted_index.Our | 104 |
| abstract_inverted_index.The | 163 |
| abstract_inverted_index.and | 27, 56, 72, 89 |
| abstract_inverted_index.at: | 167 |
| abstract_inverted_index.but | 120 |
| abstract_inverted_index.for | 155 |
| abstract_inverted_index.its | 118 |
| abstract_inverted_index.six | 31 |
| abstract_inverted_index.the | 9, 35, 73, 85, 95, 114, 127, 133, 140 |
| abstract_inverted_index.MB), | 68 |
| abstract_inverted_index.MFCC | 49 |
| abstract_inverted_index.MLP, | 88 |
| abstract_inverted_index.This | 16 |
| abstract_inverted_index.best | 115 |
| abstract_inverted_index.both | 70 |
| abstract_inverted_index.code | 164 |
| abstract_inverted_index.core | 32 |
| abstract_inverted_index.edge | 161 |
| abstract_inverted_index.from | 2, 34 |
| abstract_inverted_index.head | 99, 112 |
| abstract_inverted_index.like | 149 |
| abstract_inverted_index.most | 134, 141 |
| abstract_inverted_index.role | 7 |
| abstract_inverted_index.size | 66 |
| abstract_inverted_index.that | 107, 146 |
| abstract_inverted_index.with | 109 |
| abstract_inverted_index.(0.02 | 67 |
| abstract_inverted_index.Among | 126 |
| abstract_inverted_index.PaSST | 71, 108 |
| abstract_inverted_index.These | 143 |
| abstract_inverted_index.among | 117 |
| abstract_inverted_index.angry | 130 |
| abstract_inverted_index.falls | 122 |
| abstract_inverted_index.model | 47, 65, 102 |
| abstract_inverted_index.offer | 151 |
| abstract_inverted_index.paper | 17 |
| abstract_inverted_index.plays | 4 |
| abstract_inverted_index.score | 58 |
| abstract_inverted_index.short | 123 |
| abstract_inverted_index.small | 64 |
| abstract_inverted_index.still | 121 |
| abstract_inverted_index.study | 80 |
| abstract_inverted_index.their | 40 |
| abstract_inverted_index.three | 82 |
| abstract_inverted_index.using | 48 |
| abstract_inverted_index.vital | 6 |
| abstract_inverted_index.while | 60, 137 |
| abstract_inverted_index.PaSST, | 28, 86 |
| abstract_inverted_index.effect | 96 |
| abstract_inverted_index.heads, | 92 |
| abstract_inverted_index.speech | 3, 157 |
| abstract_inverted_index.yields | 113 |
| abstract_inverted_index.CREMA-D | 36 |
| abstract_inverted_index.Emotion | 0 |
| abstract_inverted_index.Linear, | 87 |
| abstract_inverted_index.Pooling | 91 |
| abstract_inverted_index.against | 42 |
| abstract_inverted_index.disgust | 138 |
| abstract_inverted_index.emotion | 128, 158 |
| abstract_inverted_index.models, | 25 |
| abstract_inverted_index.remains | 139 |
| abstract_inverted_index.results | 105 |
| abstract_inverted_index.suggest | 145 |
| abstract_inverted_index.(70.36%) | 59 |
| abstract_inverted_index.(70.64%) | 55 |
| abstract_inverted_index.CNN-LSTM | 45 |
| abstract_inverted_index.ablation | 79 |
| abstract_inverted_index.accuracy | 54 |
| abstract_inverted_index.analysis | 21 |
| abstract_inverted_index.baseline | 46 |
| abstract_inverted_index.classes, | 129 |
| abstract_inverted_index.dataset. | 37 |
| abstract_inverted_index.devices. | 162 |
| abstract_inverted_index.emotions | 33 |
| abstract_inverted_index.findings | 144 |
| abstract_inverted_index.indicate | 106 |
| abstract_inverted_index.presents | 18 |
| abstract_inverted_index.solution | 154 |
| abstract_inverted_index.superior | 53 |
| abstract_inverted_index.systems. | 15 |
| abstract_inverted_index.variants | 83, 119 |
| abstract_inverted_index.Attentive | 90 |
| abstract_inverted_index.available | 166 |
| abstract_inverted_index.baseline. | 74 |
| abstract_inverted_index.benchmark | 39 |
| abstract_inverted_index.conducted | 77 |
| abstract_inverted_index.detected, | 136 |
| abstract_inverted_index.features. | 50 |
| abstract_inverted_index.real-time | 156 |
| abstract_inverted_index.accurately | 135 |
| abstract_inverted_index.compelling | 153 |
| abstract_inverted_index.empathetic | 12 |
| abstract_inverted_index.understand | 94 |
| abstract_inverted_index.classifying | 30 |
| abstract_inverted_index.comparative | 20 |
| abstract_inverted_index.development | 10 |
| abstract_inverted_index.interaction | 14 |
| abstract_inverted_index.lightweight | 23, 147 |
| abstract_inverted_index.maintaining | 61 |
| abstract_inverted_index.performance | 41, 116 |
| abstract_inverted_index.recognition | 1, 159 |
| abstract_inverted_index.traditional | 44 |
| abstract_inverted_index.DistilHuBERT | 26, 51, 150 |
| abstract_inverted_index.Furthermore, | 75 |
| abstract_inverted_index.architecture | 100 |
| abstract_inverted_index.challenging. | 142 |
| abstract_inverted_index.consistently | 132 |
| abstract_inverted_index.demonstrates | 52 |
| abstract_inverted_index.performance. | 103 |
| abstract_inverted_index.transformers | 148 |
| abstract_inverted_index.DistilHuBERT. | 125 |
| abstract_inverted_index.exceptionally | 63 |
| abstract_inverted_index.outperforming | 69 |
| abstract_inverted_index.classification | 98 |
| abstract_inverted_index.human-computer | 13 |
| abstract_inverted_index.transformer-based | 24 |
| abstract_inverted_index.https://github.com/luckymaduabuchi/Emotion-detection-. | 168 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |