Emotion Recognition Based on Fusion of Local Cortical Activations and Dynamic Functional Networks Connectivity: An EEG Study Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2944008
In this paper, we present a method to improve emotion recognition based on the fusion of local cortical activations and dynamic functional network patterns. We estimate the cortical activations using power spectral density (PSD) with the Burg autoregressive model. On the other hand, we estimate the functional connectivity networks by utilizing the phase locking value (PLV). The results of cortical activations and connectivity networks show different patterns across three emotions at all frequency bands. Similarly, the results of fusion significantly improve the classification rate in terms of accuracy, sensitivity, specificity and the area under the receiver operator characteristics curve (AROC), p < 0:05. The average improvement with fusion in all evaluation metrics are 6.84% and 4.1% when compared to PSD and PLV alone, respectively. The results clearly demonstrate the advantage of fusion of cortical activations with dynamic functional networks for developing human-computer interaction system in real-world applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2019.2944008
- https://ieeexplore.ieee.org/ielx7/6287639/8600701/08849985.pdf
- OA Status
- gold
- Cited By
- 65
- References
- 89
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2975452052
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2975452052Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2019.2944008Digital Object Identifier
- Title
-
Emotion Recognition Based on Fusion of Local Cortical Activations and Dynamic Functional Networks Connectivity: An EEG StudyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Fares Al-Shargie, Usman Tariq, Meera Alex, Hasan Mir, Hasan Al‐NashashList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2019.2944008Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08849985.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08849985.pdfDirect OA link when available
- Concepts
-
Computer science, Fusion, Functional connectivity, Artificial intelligence, Electroencephalography, Pattern recognition (psychology), Autoregressive model, Sensor fusion, Receiver operating characteristic, Speech recognition, Machine learning, Neuroscience, Psychology, Mathematics, Philosophy, Econometrics, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
65Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 11, 2023: 11, 2022: 14, 2021: 13Per-year citation counts (last 5 years)
- References (count)
-
89Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2975452052 |
|---|---|
| doi | https://doi.org/10.1109/access.2019.2944008 |
| ids.doi | https://doi.org/10.1109/access.2019.2944008 |
| ids.mag | 2975452052 |
| ids.openalex | https://openalex.org/W2975452052 |
| fwci | 4.80716459 |
| type | article |
| title | Emotion Recognition Based on Fusion of Local Cortical Activations and Dynamic Functional Networks Connectivity: An EEG Study |
| awards[0].id | https://openalex.org/G6938583927 |
| awards[0].funder_id | https://openalex.org/F4320321430 |
| awards[0].display_name | |
| awards[0].funder_award_id | EFRG-EN0244 |
| awards[0].funder_display_name | American University of Sharjah |
| awards[1].id | https://openalex.org/G319033226 |
| awards[1].funder_id | https://openalex.org/F4320321430 |
| awards[1].display_name | |
| awards[1].funder_award_id | BBRI-FRG18 |
| awards[1].funder_display_name | American University of Sharjah |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 143562 |
| biblio.first_page | 143550 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10667 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Emotion and Mood Recognition |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9969000220298767 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| funders[0].id | https://openalex.org/F4320321430 |
| funders[0].ror | https://ror.org/001g2fj96 |
| funders[0].display_name | American University of Sharjah |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7315999269485474 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C158525013 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6214300394058228 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[1].display_name | Fusion |
| concepts[2].id | https://openalex.org/C3018011982 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5995082855224609 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[2].display_name | Functional connectivity |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5549637079238892 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C522805319 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5410339832305908 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[4].display_name | Electroencephalography |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5283057689666748 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C159877910 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4448290169239044 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[6].display_name | Autoregressive model |
| concepts[7].id | https://openalex.org/C33954974 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4432280659675598 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[7].display_name | Sensor fusion |
| concepts[8].id | https://openalex.org/C58471807 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4417630732059479 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[8].display_name | Receiver operating characteristic |
| concepts[9].id | https://openalex.org/C28490314 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40711310505867004 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[9].display_name | Speech recognition |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2801807224750519 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C169760540 |
| concepts[11].level | 1 |
| concepts[11].score | 0.16394716501235962 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[11].display_name | Neuroscience |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.12017908692359924 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.11055156588554382 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C149782125 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[15].display_name | Econometrics |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7315999269485474 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/fusion |
| keywords[1].score | 0.6214300394058228 |
| keywords[1].display_name | Fusion |
| keywords[2].id | https://openalex.org/keywords/functional-connectivity |
| keywords[2].score | 0.5995082855224609 |
| keywords[2].display_name | Functional connectivity |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5549637079238892 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/electroencephalography |
| keywords[4].score | 0.5410339832305908 |
| keywords[4].display_name | Electroencephalography |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5283057689666748 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/autoregressive-model |
| keywords[6].score | 0.4448290169239044 |
| keywords[6].display_name | Autoregressive model |
| keywords[7].id | https://openalex.org/keywords/sensor-fusion |
| keywords[7].score | 0.4432280659675598 |
| keywords[7].display_name | Sensor fusion |
| keywords[8].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[8].score | 0.4417630732059479 |
| keywords[8].display_name | Receiver operating characteristic |
| keywords[9].id | https://openalex.org/keywords/speech-recognition |
| keywords[9].score | 0.40711310505867004 |
| keywords[9].display_name | Speech recognition |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.2801807224750519 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/neuroscience |
| keywords[11].score | 0.16394716501235962 |
| keywords[11].display_name | Neuroscience |
| keywords[12].id | https://openalex.org/keywords/psychology |
| keywords[12].score | 0.12017908692359924 |
| keywords[12].display_name | Psychology |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.11055156588554382 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/access.2019.2944008 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08849985.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2019.2944008 |
| locations[1].id | pmh:oai:doaj.org/article:b7e9d0a7b0554fecbbaab061dc436251 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 7, Pp 143550-143562 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/b7e9d0a7b0554fecbbaab061dc436251 |
| locations[2].id | pmh:oai:dspace.aus.edu:oai:dspace.aus.edu:11073/16599 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400028 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DSpace at AUS (American University of Sharjah) |
| locations[2].source.host_organization | https://openalex.org/I199440890 |
| locations[2].source.host_organization_name | American University of Sharjah |
| locations[2].source.host_organization_lineage | https://openalex.org/I199440890 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Peer-Reviewed |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/11073/16599 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5015905278 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5792-8032 |
| authorships[0].author.display_name | Fares Al-Shargie |
| authorships[0].countries | AE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I199440890 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, American University of Sharjah, Sharjah, UAE |
| authorships[0].institutions[0].id | https://openalex.org/I199440890 |
| authorships[0].institutions[0].ror | https://ror.org/001g2fj96 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I199440890 |
| authorships[0].institutions[0].country_code | AE |
| authorships[0].institutions[0].display_name | American University of Sharjah |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fares Al-Shargie |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering, American University of Sharjah, Sharjah, UAE |
| authorships[1].author.id | https://openalex.org/A5088139460 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7672-1187 |
| authorships[1].author.display_name | Usman Tariq |
| authorships[1].countries | AE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I199440890 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, American University of Sharjah, Sharjah, UAE |
| authorships[1].institutions[0].id | https://openalex.org/I199440890 |
| authorships[1].institutions[0].ror | https://ror.org/001g2fj96 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I199440890 |
| authorships[1].institutions[0].country_code | AE |
| authorships[1].institutions[0].display_name | American University of Sharjah |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Usman Tariq |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering, American University of Sharjah, Sharjah, UAE |
| authorships[2].author.id | https://openalex.org/A5014605536 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5624-7550 |
| authorships[2].author.display_name | Meera Alex |
| authorships[2].countries | AE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I199440890 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, American University of Sharjah, Sharjah, UAE |
| authorships[2].institutions[0].id | https://openalex.org/I199440890 |
| authorships[2].institutions[0].ror | https://ror.org/001g2fj96 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I199440890 |
| authorships[2].institutions[0].country_code | AE |
| authorships[2].institutions[0].display_name | American University of Sharjah |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Meera Alex |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering, American University of Sharjah, Sharjah, UAE |
| authorships[3].author.id | https://openalex.org/A5027048647 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6863-3002 |
| authorships[3].author.display_name | Hasan Mir |
| authorships[3].countries | AE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I199440890 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, American University of Sharjah, Sharjah, UAE |
| authorships[3].institutions[0].id | https://openalex.org/I199440890 |
| authorships[3].institutions[0].ror | https://ror.org/001g2fj96 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I199440890 |
| authorships[3].institutions[0].country_code | AE |
| authorships[3].institutions[0].display_name | American University of Sharjah |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hasan Mir |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical Engineering, American University of Sharjah, Sharjah, UAE |
| authorships[4].author.id | https://openalex.org/A5080706447 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9685-4937 |
| authorships[4].author.display_name | Hasan Al‐Nashash |
| authorships[4].countries | AE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I199440890 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, American University of Sharjah, Sharjah, UAE |
| authorships[4].institutions[0].id | https://openalex.org/I199440890 |
| authorships[4].institutions[0].ror | https://ror.org/001g2fj96 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I199440890 |
| authorships[4].institutions[0].country_code | AE |
| authorships[4].institutions[0].display_name | American University of Sharjah |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hasan Al-Nashash |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical Engineering, American University of Sharjah, Sharjah, UAE |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08849985.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-10-03T00:00:00 |
| display_name | Emotion Recognition Based on Fusion of Local Cortical Activations and Dynamic Functional Networks Connectivity: An EEG Study |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W4385649027, https://openalex.org/W2171218219, https://openalex.org/W1972271943, https://openalex.org/W2150410159, https://openalex.org/W4400094315, https://openalex.org/W4327525404, https://openalex.org/W2132659060, https://openalex.org/W2031992971, https://openalex.org/W3214791684, https://openalex.org/W2152662039 |
| cited_by_count | 65 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 11 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 14 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 13 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 5 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1109/access.2019.2944008 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08849985.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2019.2944008 |
| primary_location.id | doi:10.1109/access.2019.2944008 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08849985.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2019.2944008 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2551163901, https://openalex.org/W2233886816, https://openalex.org/W2085652821, https://openalex.org/W2049507216, https://openalex.org/W6671865762, https://openalex.org/W2913846632, https://openalex.org/W2910633903, https://openalex.org/W2075509710, https://openalex.org/W2917145198, https://openalex.org/W2518238252, https://openalex.org/W2808343558, https://openalex.org/W2765362197, https://openalex.org/W2274642938, https://openalex.org/W2043037790, https://openalex.org/W2090834654, https://openalex.org/W2523525429, https://openalex.org/W2346826225, https://openalex.org/W2128495200, https://openalex.org/W2528351778, https://openalex.org/W2757047268, https://openalex.org/W6748720016, https://openalex.org/W2606321326, https://openalex.org/W2765666606, https://openalex.org/W2289714406, https://openalex.org/W2464929676, https://openalex.org/W6690073643, https://openalex.org/W2230936439, https://openalex.org/W2888184955, https://openalex.org/W2139564752, https://openalex.org/W2884935442, https://openalex.org/W2053906014, https://openalex.org/W2146828510, https://openalex.org/W2025751302, https://openalex.org/W2020667299, https://openalex.org/W1976512378, https://openalex.org/W2740113900, https://openalex.org/W2598673810, https://openalex.org/W2790814155, https://openalex.org/W2141627625, https://openalex.org/W1993144914, https://openalex.org/W2164699598, https://openalex.org/W2899399370, https://openalex.org/W2062001242, https://openalex.org/W2100520255, https://openalex.org/W2116083905, https://openalex.org/W2030992811, https://openalex.org/W2203607022, https://openalex.org/W2099899102, https://openalex.org/W2152476757, https://openalex.org/W2115810652, https://openalex.org/W1603307924, https://openalex.org/W2043729845, https://openalex.org/W2105981921, https://openalex.org/W1980122010, https://openalex.org/W1998221425, https://openalex.org/W2004204487, https://openalex.org/W2907371384, https://openalex.org/W6698185673, https://openalex.org/W2122098299, https://openalex.org/W2775675437, https://openalex.org/W2002055708, https://openalex.org/W2792325177, https://openalex.org/W1947251450, https://openalex.org/W2109582949, https://openalex.org/W2278113816, https://openalex.org/W2227520796, https://openalex.org/W2132889650, https://openalex.org/W2749183303, https://openalex.org/W2156503193, https://openalex.org/W2001097956, https://openalex.org/W2889040854, https://openalex.org/W2143350951, https://openalex.org/W2099610690, https://openalex.org/W2009926717, https://openalex.org/W2126292754, https://openalex.org/W2049601208, https://openalex.org/W2162137602, https://openalex.org/W1671049371, https://openalex.org/W2009591042, https://openalex.org/W1529823160, https://openalex.org/W1975794968, https://openalex.org/W2585915198, https://openalex.org/W2020091808, https://openalex.org/W2127532308, https://openalex.org/W2301888327, https://openalex.org/W2962905870, https://openalex.org/W2952857756, https://openalex.org/W2788547558, https://openalex.org/W2085497785 |
| referenced_works_count | 89 |
| abstract_inverted_index.a | 5 |
| abstract_inverted_index.p | 100 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.On | 39 |
| abstract_inverted_index.We | 24 |
| abstract_inverted_index.at | 70 |
| abstract_inverted_index.by | 49 |
| abstract_inverted_index.in | 84, 108, 144 |
| abstract_inverted_index.of | 15, 58, 77, 86, 130, 132 |
| abstract_inverted_index.on | 12 |
| abstract_inverted_index.to | 7, 118 |
| abstract_inverted_index.we | 3, 43 |
| abstract_inverted_index.PLV | 121 |
| abstract_inverted_index.PSD | 119 |
| abstract_inverted_index.The | 56, 103, 124 |
| abstract_inverted_index.all | 71, 109 |
| abstract_inverted_index.and | 19, 61, 90, 114, 120 |
| abstract_inverted_index.are | 112 |
| abstract_inverted_index.for | 139 |
| abstract_inverted_index.the | 13, 26, 35, 40, 45, 51, 75, 81, 91, 94, 128 |
| abstract_inverted_index.< | 101 |
| abstract_inverted_index.4.1% | 115 |
| abstract_inverted_index.Burg | 36 |
| abstract_inverted_index.area | 92 |
| abstract_inverted_index.rate | 83 |
| abstract_inverted_index.show | 64 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.when | 116 |
| abstract_inverted_index.with | 34, 106, 135 |
| abstract_inverted_index.(PSD) | 33 |
| abstract_inverted_index.0:05. | 102 |
| abstract_inverted_index.6.84% | 113 |
| abstract_inverted_index.based | 11 |
| abstract_inverted_index.curve | 98 |
| abstract_inverted_index.hand, | 42 |
| abstract_inverted_index.local | 16 |
| abstract_inverted_index.other | 41 |
| abstract_inverted_index.phase | 52 |
| abstract_inverted_index.power | 30 |
| abstract_inverted_index.terms | 85 |
| abstract_inverted_index.three | 68 |
| abstract_inverted_index.under | 93 |
| abstract_inverted_index.using | 29 |
| abstract_inverted_index.value | 54 |
| abstract_inverted_index.(PLV). | 55 |
| abstract_inverted_index.across | 67 |
| abstract_inverted_index.alone, | 122 |
| abstract_inverted_index.bands. | 73 |
| abstract_inverted_index.fusion | 14, 78, 107, 131 |
| abstract_inverted_index.method | 6 |
| abstract_inverted_index.model. | 38 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.system | 143 |
| abstract_inverted_index.(AROC), | 99 |
| abstract_inverted_index.average | 104 |
| abstract_inverted_index.clearly | 126 |
| abstract_inverted_index.density | 32 |
| abstract_inverted_index.dynamic | 20, 136 |
| abstract_inverted_index.emotion | 9 |
| abstract_inverted_index.improve | 8, 80 |
| abstract_inverted_index.locking | 53 |
| abstract_inverted_index.metrics | 111 |
| abstract_inverted_index.network | 22 |
| abstract_inverted_index.present | 4 |
| abstract_inverted_index.results | 57, 76, 125 |
| abstract_inverted_index.compared | 117 |
| abstract_inverted_index.cortical | 17, 27, 59, 133 |
| abstract_inverted_index.emotions | 69 |
| abstract_inverted_index.estimate | 25, 44 |
| abstract_inverted_index.networks | 48, 63, 138 |
| abstract_inverted_index.operator | 96 |
| abstract_inverted_index.patterns | 66 |
| abstract_inverted_index.receiver | 95 |
| abstract_inverted_index.spectral | 31 |
| abstract_inverted_index.accuracy, | 87 |
| abstract_inverted_index.advantage | 129 |
| abstract_inverted_index.different | 65 |
| abstract_inverted_index.frequency | 72 |
| abstract_inverted_index.patterns. | 23 |
| abstract_inverted_index.utilizing | 50 |
| abstract_inverted_index.Similarly, | 74 |
| abstract_inverted_index.developing | 140 |
| abstract_inverted_index.evaluation | 110 |
| abstract_inverted_index.functional | 21, 46, 137 |
| abstract_inverted_index.real-world | 145 |
| abstract_inverted_index.activations | 18, 28, 60, 134 |
| abstract_inverted_index.demonstrate | 127 |
| abstract_inverted_index.improvement | 105 |
| abstract_inverted_index.interaction | 142 |
| abstract_inverted_index.recognition | 10 |
| abstract_inverted_index.specificity | 89 |
| abstract_inverted_index.connectivity | 47, 62 |
| abstract_inverted_index.sensitivity, | 88 |
| abstract_inverted_index.applications. | 146 |
| abstract_inverted_index.respectively. | 123 |
| abstract_inverted_index.significantly | 79 |
| abstract_inverted_index.autoregressive | 37 |
| abstract_inverted_index.classification | 82 |
| abstract_inverted_index.human-computer | 141 |
| abstract_inverted_index.characteristics | 97 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.9526583 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |