Empirical Analysis for Crime Prediction and Forecasting using Machine Learning and Deep Learning Techniques Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48175/ijarsct-5900
Crime Forecasting refers to the basic process of predicting crimes before they occur. Crimes are a common social problem affecting the quality of life and the economic growth of a society. A crime is a deliberate act that can cause physical or psychological harm, as well as property damage or loss, and can lead to punishment by a state or other authority according to the severity of the crime. For our daily purposes we have to go many places every day and many times in our daily lives we face numerous security issues such as hijacking, kidnapping, harassment, etc. Daily there are huge numbers of crimes occurring frequently. These require keeping track of all the crimes and maintaining a database for same which may be used for future reference. The current problem faced are maintaining of proper dataset of crime and analyzing this data to help in predicting and solving crimes in future. The main objective of this project is to analyze dataset which consist of numerous crimes and predicting the type of crime which might occur in future depending upon various conditions. We will be using the technique of machine learning and data science for crime prediction of Chicago and Los Angeles crime data set. The K-Nearest Neighbor (KNN) classification and various other algorithms will be tested for crime prediction and one with better accuracy will be used for training. The main purpose of this project is to give a brief idea of how machine learning can be used by the law enforcement agencies to detect, predict and solve crimes at a much faster rate and thus reduce the crime rate. It is not restricted to Chicago and Los Angeles, this can be used in other states or countries depending upon the availability of the dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.48175/ijarsct-5900
- OA Status
- diamond
- Cited By
- 6
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4290059346
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4290059346Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48175/ijarsct-5900Digital Object Identifier
- Title
-
Empirical Analysis for Crime Prediction and Forecasting using Machine Learning and Deep Learning TechniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-06Full publication date if available
- Authors
-
Suma T, C Megha, Mittal Savan Kumar, Mahesh JadhavList of authors in order
- Landing page
-
https://doi.org/10.48175/ijarsct-5900Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48175/ijarsct-5900Direct OA link when available
- Concepts
-
Machine learning, Computer science, Artificial intelligence, Law enforcement, Harm, Harassment, Process (computing), Punishment (psychology), Criminology, Political science, Psychology, Law, Social psychology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 5, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4290059346 |
|---|---|
| doi | https://doi.org/10.48175/ijarsct-5900 |
| ids.doi | https://doi.org/10.48175/ijarsct-5900 |
| ids.openalex | https://openalex.org/W4290059346 |
| fwci | 0.78559204 |
| type | article |
| title | Empirical Analysis for Crime Prediction and Forecasting using Machine Learning and Deep Learning Techniques |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 62 |
| biblio.first_page | 60 |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9882000088691711 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9423999786376953 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9376000165939331 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C119857082 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6475392580032349 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[0].display_name | Machine learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6337523460388184 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6303747892379761 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780262971 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6185117959976196 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q44554 |
| concepts[3].display_name | Law enforcement |
| concepts[4].id | https://openalex.org/C2777363581 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5978727340698242 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q15098235 |
| concepts[4].display_name | Harm |
| concepts[5].id | https://openalex.org/C2778976716 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5317472219467163 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3240539 |
| concepts[5].display_name | Harassment |
| concepts[6].id | https://openalex.org/C98045186 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47829896211624146 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[6].display_name | Process (computing) |
| concepts[7].id | https://openalex.org/C2779295839 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41397035121917725 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3544090 |
| concepts[7].display_name | Punishment (psychology) |
| concepts[8].id | https://openalex.org/C73484699 |
| concepts[8].level | 1 |
| concepts[8].score | 0.38632631301879883 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q161733 |
| concepts[8].display_name | Criminology |
| concepts[9].id | https://openalex.org/C17744445 |
| concepts[9].level | 0 |
| concepts[9].score | 0.17487463355064392 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[9].display_name | Political science |
| concepts[10].id | https://openalex.org/C15744967 |
| concepts[10].level | 0 |
| concepts[10].score | 0.16745862364768982 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[10].display_name | Psychology |
| concepts[11].id | https://openalex.org/C199539241 |
| concepts[11].level | 1 |
| concepts[11].score | 0.15643885731697083 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[11].display_name | Law |
| concepts[12].id | https://openalex.org/C77805123 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08993425965309143 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[12].display_name | Social psychology |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/machine-learning |
| keywords[0].score | 0.6475392580032349 |
| keywords[0].display_name | Machine learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6337523460388184 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6303747892379761 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/law-enforcement |
| keywords[3].score | 0.6185117959976196 |
| keywords[3].display_name | Law enforcement |
| keywords[4].id | https://openalex.org/keywords/harm |
| keywords[4].score | 0.5978727340698242 |
| keywords[4].display_name | Harm |
| keywords[5].id | https://openalex.org/keywords/harassment |
| keywords[5].score | 0.5317472219467163 |
| keywords[5].display_name | Harassment |
| keywords[6].id | https://openalex.org/keywords/process |
| keywords[6].score | 0.47829896211624146 |
| keywords[6].display_name | Process (computing) |
| keywords[7].id | https://openalex.org/keywords/punishment |
| keywords[7].score | 0.41397035121917725 |
| keywords[7].display_name | Punishment (psychology) |
| keywords[8].id | https://openalex.org/keywords/criminology |
| keywords[8].score | 0.38632631301879883 |
| keywords[8].display_name | Criminology |
| keywords[9].id | https://openalex.org/keywords/political-science |
| keywords[9].score | 0.17487463355064392 |
| keywords[9].display_name | Political science |
| keywords[10].id | https://openalex.org/keywords/psychology |
| keywords[10].score | 0.16745862364768982 |
| keywords[10].display_name | Psychology |
| keywords[11].id | https://openalex.org/keywords/law |
| keywords[11].score | 0.15643885731697083 |
| keywords[11].display_name | Law |
| keywords[12].id | https://openalex.org/keywords/social-psychology |
| keywords[12].score | 0.08993425965309143 |
| keywords[12].display_name | Social psychology |
| language | en |
| locations[0].id | doi:10.48175/ijarsct-5900 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201094 |
| locations[0].source.issn | 2581-9429 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2581-9429 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Advanced Research in Science Communication and Technology |
| locations[0].source.host_organization | https://openalex.org/P4376906117 |
| locations[0].source.host_organization_name | Shivkrupa Publication's |
| locations[0].source.host_organization_lineage | https://openalex.org/P4376906117 |
| locations[0].source.host_organization_lineage_names | Shivkrupa Publication's |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Advanced Research in Science, Communication and Technology |
| locations[0].landing_page_url | https://doi.org/10.48175/ijarsct-5900 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5031366045 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Suma T |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I15517640 |
| authorships[0].affiliations[0].raw_affiliation_string | Sri Venkateshwara College of Engineering, Bangalore, India |
| authorships[0].institutions[0].id | https://openalex.org/I15517640 |
| authorships[0].institutions[0].ror | https://ror.org/00xh8va68 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I15517640 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Shri Venkateshwara University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Dr. Suma T |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sri Venkateshwara College of Engineering, Bangalore, India |
| authorships[1].author.id | https://openalex.org/A5046312623 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | C Megha |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I15517640 |
| authorships[1].affiliations[0].raw_affiliation_string | Sri Venkateshwara College of Engineering, Bangalore, India |
| authorships[1].institutions[0].id | https://openalex.org/I15517640 |
| authorships[1].institutions[0].ror | https://ror.org/00xh8va68 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I15517640 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Shri Venkateshwara University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Megha C |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sri Venkateshwara College of Engineering, Bangalore, India |
| authorships[2].author.id | https://openalex.org/A5027778628 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mittal Savan Kumar |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I15517640 |
| authorships[2].affiliations[0].raw_affiliation_string | Sri Venkateshwara College of Engineering, Bangalore, India |
| authorships[2].institutions[0].id | https://openalex.org/I15517640 |
| authorships[2].institutions[0].ror | https://ror.org/00xh8va68 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I15517640 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Shri Venkateshwara University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Mittal Savan Kumar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Sri Venkateshwara College of Engineering, Bangalore, India |
| authorships[3].author.id | https://openalex.org/A5045375895 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6065-8929 |
| authorships[3].author.display_name | Mahesh Jadhav |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I15517640 |
| authorships[3].affiliations[0].raw_affiliation_string | Sri Venkateshwara College of Engineering, Bangalore, India |
| authorships[3].institutions[0].id | https://openalex.org/I15517640 |
| authorships[3].institutions[0].ror | https://ror.org/00xh8va68 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I15517640 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Shri Venkateshwara University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | None Mahesh Jadhav |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Sri Venkateshwara College of Engineering, Bangalore, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48175/ijarsct-5900 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Empirical Analysis for Crime Prediction and Forecasting using Machine Learning and Deep Learning Techniques |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9882000088691711 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W3006940190, https://openalex.org/W3127168504, https://openalex.org/W2967549601, https://openalex.org/W77677764, https://openalex.org/W3007983412, https://openalex.org/W2993936231, https://openalex.org/W4233152263, https://openalex.org/W2237146919, https://openalex.org/W147547975, https://openalex.org/W2585769455 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48175/ijarsct-5900 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201094 |
| best_oa_location.source.issn | 2581-9429 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2581-9429 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Advanced Research in Science Communication and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4376906117 |
| best_oa_location.source.host_organization_name | Shivkrupa Publication's |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4376906117 |
| best_oa_location.source.host_organization_lineage_names | Shivkrupa Publication's |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Advanced Research in Science, Communication and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.48175/ijarsct-5900 |
| primary_location.id | doi:10.48175/ijarsct-5900 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201094 |
| primary_location.source.issn | 2581-9429 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2581-9429 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Advanced Research in Science Communication and Technology |
| primary_location.source.host_organization | https://openalex.org/P4376906117 |
| primary_location.source.host_organization_name | Shivkrupa Publication's |
| primary_location.source.host_organization_lineage | https://openalex.org/P4376906117 |
| primary_location.source.host_organization_lineage_names | Shivkrupa Publication's |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Advanced Research in Science, Communication and Technology |
| primary_location.landing_page_url | https://doi.org/10.48175/ijarsct-5900 |
| publication_date | 2022-08-06 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2772602535, https://openalex.org/W2584186900, https://openalex.org/W2799892676, https://openalex.org/W2169738360, https://openalex.org/W2913211573 |
| referenced_works_count | 5 |
| abstract_inverted_index.A | 31 |
| abstract_inverted_index.a | 15, 29, 34, 57, 118, 240, 262 |
| abstract_inverted_index.It | 272 |
| abstract_inverted_index.We | 183 |
| abstract_inverted_index.as | 44, 46, 94 |
| abstract_inverted_index.at | 261 |
| abstract_inverted_index.be | 124, 185, 216, 227, 248, 283 |
| abstract_inverted_index.by | 56, 250 |
| abstract_inverted_index.go | 76 |
| abstract_inverted_index.in | 84, 146, 151, 177, 285 |
| abstract_inverted_index.is | 33, 159, 237, 273 |
| abstract_inverted_index.of | 7, 22, 28, 66, 104, 112, 135, 138, 156, 165, 172, 189, 198, 234, 243, 294 |
| abstract_inverted_index.or | 41, 49, 59, 288 |
| abstract_inverted_index.to | 3, 54, 63, 75, 144, 160, 238, 255, 276 |
| abstract_inverted_index.we | 73, 88 |
| abstract_inverted_index.For | 69 |
| abstract_inverted_index.Los | 201, 279 |
| abstract_inverted_index.The | 129, 153, 206, 231 |
| abstract_inverted_index.act | 36 |
| abstract_inverted_index.all | 113 |
| abstract_inverted_index.and | 24, 51, 81, 116, 140, 148, 168, 192, 200, 211, 221, 258, 266, 278 |
| abstract_inverted_index.are | 14, 101, 133 |
| abstract_inverted_index.can | 38, 52, 247, 282 |
| abstract_inverted_index.day | 80 |
| abstract_inverted_index.for | 120, 126, 195, 218, 229 |
| abstract_inverted_index.how | 244 |
| abstract_inverted_index.law | 252 |
| abstract_inverted_index.may | 123 |
| abstract_inverted_index.not | 274 |
| abstract_inverted_index.one | 222 |
| abstract_inverted_index.our | 70, 85 |
| abstract_inverted_index.the | 4, 20, 25, 64, 67, 114, 170, 187, 251, 269, 292, 295 |
| abstract_inverted_index.data | 143, 193, 204 |
| abstract_inverted_index.etc. | 98 |
| abstract_inverted_index.face | 89 |
| abstract_inverted_index.give | 239 |
| abstract_inverted_index.have | 74 |
| abstract_inverted_index.help | 145 |
| abstract_inverted_index.huge | 102 |
| abstract_inverted_index.idea | 242 |
| abstract_inverted_index.lead | 53 |
| abstract_inverted_index.life | 23 |
| abstract_inverted_index.main | 154, 232 |
| abstract_inverted_index.many | 77, 82 |
| abstract_inverted_index.much | 263 |
| abstract_inverted_index.rate | 265 |
| abstract_inverted_index.same | 121 |
| abstract_inverted_index.set. | 205 |
| abstract_inverted_index.such | 93 |
| abstract_inverted_index.that | 37 |
| abstract_inverted_index.they | 11 |
| abstract_inverted_index.this | 142, 157, 235, 281 |
| abstract_inverted_index.thus | 267 |
| abstract_inverted_index.type | 171 |
| abstract_inverted_index.upon | 180, 291 |
| abstract_inverted_index.used | 125, 228, 249, 284 |
| abstract_inverted_index.well | 45 |
| abstract_inverted_index.will | 184, 215, 226 |
| abstract_inverted_index.with | 223 |
| abstract_inverted_index.(KNN) | 209 |
| abstract_inverted_index.Crime | 0 |
| abstract_inverted_index.Daily | 99 |
| abstract_inverted_index.These | 108 |
| abstract_inverted_index.basic | 5 |
| abstract_inverted_index.brief | 241 |
| abstract_inverted_index.cause | 39 |
| abstract_inverted_index.crime | 32, 139, 173, 196, 203, 219, 270 |
| abstract_inverted_index.daily | 71, 86 |
| abstract_inverted_index.every | 79 |
| abstract_inverted_index.faced | 132 |
| abstract_inverted_index.harm, | 43 |
| abstract_inverted_index.lives | 87 |
| abstract_inverted_index.loss, | 50 |
| abstract_inverted_index.might | 175 |
| abstract_inverted_index.occur | 176 |
| abstract_inverted_index.other | 60, 213, 286 |
| abstract_inverted_index.rate. | 271 |
| abstract_inverted_index.solve | 259 |
| abstract_inverted_index.state | 58 |
| abstract_inverted_index.there | 100 |
| abstract_inverted_index.times | 83 |
| abstract_inverted_index.track | 111 |
| abstract_inverted_index.using | 186 |
| abstract_inverted_index.which | 122, 163, 174 |
| abstract_inverted_index.Crimes | 13 |
| abstract_inverted_index.before | 10 |
| abstract_inverted_index.better | 224 |
| abstract_inverted_index.common | 16 |
| abstract_inverted_index.crime. | 68 |
| abstract_inverted_index.crimes | 9, 105, 115, 150, 167, 260 |
| abstract_inverted_index.damage | 48 |
| abstract_inverted_index.faster | 264 |
| abstract_inverted_index.future | 127, 178 |
| abstract_inverted_index.growth | 27 |
| abstract_inverted_index.issues | 92 |
| abstract_inverted_index.occur. | 12 |
| abstract_inverted_index.places | 78 |
| abstract_inverted_index.proper | 136 |
| abstract_inverted_index.reduce | 268 |
| abstract_inverted_index.refers | 2 |
| abstract_inverted_index.social | 17 |
| abstract_inverted_index.states | 287 |
| abstract_inverted_index.tested | 217 |
| abstract_inverted_index.Angeles | 202 |
| abstract_inverted_index.Chicago | 199, 277 |
| abstract_inverted_index.analyze | 161 |
| abstract_inverted_index.consist | 164 |
| abstract_inverted_index.current | 130 |
| abstract_inverted_index.dataset | 137, 162 |
| abstract_inverted_index.detect, | 256 |
| abstract_inverted_index.future. | 152 |
| abstract_inverted_index.keeping | 110 |
| abstract_inverted_index.machine | 190, 245 |
| abstract_inverted_index.numbers | 103 |
| abstract_inverted_index.predict | 257 |
| abstract_inverted_index.problem | 18, 131 |
| abstract_inverted_index.process | 6 |
| abstract_inverted_index.project | 158, 236 |
| abstract_inverted_index.purpose | 233 |
| abstract_inverted_index.quality | 21 |
| abstract_inverted_index.require | 109 |
| abstract_inverted_index.science | 194 |
| abstract_inverted_index.solving | 149 |
| abstract_inverted_index.various | 181, 212 |
| abstract_inverted_index.Angeles, | 280 |
| abstract_inverted_index.Neighbor | 208 |
| abstract_inverted_index.accuracy | 225 |
| abstract_inverted_index.agencies | 254 |
| abstract_inverted_index.database | 119 |
| abstract_inverted_index.dataset. | 296 |
| abstract_inverted_index.economic | 26 |
| abstract_inverted_index.learning | 191, 246 |
| abstract_inverted_index.numerous | 90, 166 |
| abstract_inverted_index.physical | 40 |
| abstract_inverted_index.property | 47 |
| abstract_inverted_index.purposes | 72 |
| abstract_inverted_index.security | 91 |
| abstract_inverted_index.severity | 65 |
| abstract_inverted_index.society. | 30 |
| abstract_inverted_index.K-Nearest | 207 |
| abstract_inverted_index.according | 62 |
| abstract_inverted_index.affecting | 19 |
| abstract_inverted_index.analyzing | 141 |
| abstract_inverted_index.authority | 61 |
| abstract_inverted_index.countries | 289 |
| abstract_inverted_index.depending | 179, 290 |
| abstract_inverted_index.objective | 155 |
| abstract_inverted_index.occurring | 106 |
| abstract_inverted_index.technique | 188 |
| abstract_inverted_index.training. | 230 |
| abstract_inverted_index.algorithms | 214 |
| abstract_inverted_index.deliberate | 35 |
| abstract_inverted_index.hijacking, | 95 |
| abstract_inverted_index.predicting | 8, 147, 169 |
| abstract_inverted_index.prediction | 197, 220 |
| abstract_inverted_index.punishment | 55 |
| abstract_inverted_index.reference. | 128 |
| abstract_inverted_index.restricted | 275 |
| abstract_inverted_index.Forecasting | 1 |
| abstract_inverted_index.conditions. | 182 |
| abstract_inverted_index.enforcement | 253 |
| abstract_inverted_index.frequently. | 107 |
| abstract_inverted_index.harassment, | 97 |
| abstract_inverted_index.kidnapping, | 96 |
| abstract_inverted_index.maintaining | 117, 134 |
| abstract_inverted_index.availability | 293 |
| abstract_inverted_index.psychological | 42 |
| abstract_inverted_index.classification | 210 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.66084624 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |