Empirical Performance of Nonparametric Regression with Heteroscedasticity Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.18187/pjsor.v21i4.4746
Heteroscedasticity is a well-known violation of an assumption in parametric regression analysis. In such cases, to handle this problem, a generalized least squares method is used. In this article, we have manifested the robustness of nonparametric regression in the case of heteroscedastic errors. Nonparametric regression is a robust method that proceeds without requiring inflexible assumptions from the model. We empirically compared the performance of the generalized least squares method with multivariate nonparametric kernel regression. Multivariate nonparametric kernel regression is used with a Gaussian kernel and six bandwidths on China's per capita consumption expenditure. The performance of nonparametric regression with Bayesian bandwidth was found better on the basis of mean squared error. Simulation results are also presented, with their graphical representation, where nonparametric regression with different bandwidths at different heteroscedastic levels is observed, and we found that our proposed method performed best in both presence and absence of homoscedasticity.
Related Topics
- Type
- other
- Language
- en
- Landing Page
- https://pjsor.com/pjsor/article/view/4746
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W7115059591
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7115059591Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18187/pjsor.v21i4.4746Digital Object Identifier
- Title
-
Empirical Performance of Nonparametric Regression with HeteroscedasticityWork title
- Type
-
otherOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-05Full publication date if available
- Authors
-
Khan, Javaria Ahmad, Akbar, Atif, Ejaz, MuhammadList of authors in order
- Landing page
-
https://pjsor.com/pjsor/article/view/4746Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://pjsor.com/pjsor/article/view/4746Direct OA link when available
- Concepts
-
Nonparametric regression, Heteroscedasticity, Nonparametric statistics, Mathematics, Statistics, Semiparametric regression, Econometrics, Kernel regression, Regression analysis, Robust regression, Regression, Goldfeld–Quandt test, Local regression, Polynomial regression, Kernel (algebra), Parametric statistics, Kernel smoother, Multivariate statistics, Segmented regression, Kernel method, Bayesian multivariate linear regression, Gaussian process, Bayesian probability, Robustness (evolution), Generalized least squares, Partial least squares regressionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7115059591 |
|---|---|
| doi | https://doi.org/10.18187/pjsor.v21i4.4746 |
| ids.openalex | https://openalex.org/W7115059591 |
| fwci | |
| type | other |
| title | Empirical Performance of Nonparametric Regression with Heteroscedasticity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C74127309 |
| concepts[0].level | 3 |
| concepts[0].score | 0.762588381767273 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3455886 |
| concepts[0].display_name | Nonparametric regression |
| concepts[1].id | https://openalex.org/C101104100 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7249322533607483 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1063540 |
| concepts[1].display_name | Heteroscedasticity |
| concepts[2].id | https://openalex.org/C102366305 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6928163766860962 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1097688 |
| concepts[2].display_name | Nonparametric statistics |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6564326882362366 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.606909453868866 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C19539793 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5611513257026672 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7449609 |
| concepts[5].display_name | Semiparametric regression |
| concepts[6].id | https://openalex.org/C149782125 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5418800711631775 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[6].display_name | Econometrics |
| concepts[7].id | https://openalex.org/C200695384 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4623035192489624 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1739319 |
| concepts[7].display_name | Kernel regression |
| concepts[8].id | https://openalex.org/C152877465 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42898210883140564 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[8].display_name | Regression analysis |
| concepts[9].id | https://openalex.org/C70259352 |
| concepts[9].level | 3 |
| concepts[9].score | 0.40645891427993774 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1847839 |
| concepts[9].display_name | Robust regression |
| concepts[10].id | https://openalex.org/C83546350 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3533973693847656 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[10].display_name | Regression |
| concepts[11].id | https://openalex.org/C122379554 |
| concepts[11].level | 5 |
| concepts[11].score | 0.3468180000782013 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3519047 |
| concepts[11].display_name | Goldfeld–Quandt test |
| concepts[12].id | https://openalex.org/C60316415 |
| concepts[12].level | 4 |
| concepts[12].score | 0.34502893686294556 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q6664520 |
| concepts[12].display_name | Local regression |
| concepts[13].id | https://openalex.org/C120068334 |
| concepts[13].level | 3 |
| concepts[13].score | 0.34041106700897217 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q45343 |
| concepts[13].display_name | Polynomial regression |
| concepts[14].id | https://openalex.org/C74193536 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3349054753780365 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[14].display_name | Kernel (algebra) |
| concepts[15].id | https://openalex.org/C117251300 |
| concepts[15].level | 2 |
| concepts[15].score | 0.32076436281204224 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[15].display_name | Parametric statistics |
| concepts[16].id | https://openalex.org/C27406209 |
| concepts[16].level | 5 |
| concepts[16].score | 0.30175113677978516 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q6394203 |
| concepts[16].display_name | Kernel smoother |
| concepts[17].id | https://openalex.org/C161584116 |
| concepts[17].level | 2 |
| concepts[17].score | 0.301250159740448 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[17].display_name | Multivariate statistics |
| concepts[18].id | https://openalex.org/C35519122 |
| concepts[18].level | 4 |
| concepts[18].score | 0.2981880009174347 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3775699 |
| concepts[18].display_name | Segmented regression |
| concepts[19].id | https://openalex.org/C122280245 |
| concepts[19].level | 3 |
| concepts[19].score | 0.29721513390541077 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q620622 |
| concepts[19].display_name | Kernel method |
| concepts[20].id | https://openalex.org/C64946054 |
| concepts[20].level | 3 |
| concepts[20].score | 0.2747914791107178 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q4874476 |
| concepts[20].display_name | Bayesian multivariate linear regression |
| concepts[21].id | https://openalex.org/C61326573 |
| concepts[21].level | 3 |
| concepts[21].score | 0.2680329978466034 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[21].display_name | Gaussian process |
| concepts[22].id | https://openalex.org/C107673813 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2615611255168915 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[22].display_name | Bayesian probability |
| concepts[23].id | https://openalex.org/C63479239 |
| concepts[23].level | 3 |
| concepts[23].score | 0.2525079548358917 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[23].display_name | Robustness (evolution) |
| concepts[24].id | https://openalex.org/C188649462 |
| concepts[24].level | 3 |
| concepts[24].score | 0.25212591886520386 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q2246261 |
| concepts[24].display_name | Generalized least squares |
| concepts[25].id | https://openalex.org/C22354355 |
| concepts[25].level | 2 |
| concepts[25].score | 0.25057104229927063 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q422009 |
| concepts[25].display_name | Partial least squares regression |
| keywords[0].id | https://openalex.org/keywords/nonparametric-regression |
| keywords[0].score | 0.762588381767273 |
| keywords[0].display_name | Nonparametric regression |
| keywords[1].id | https://openalex.org/keywords/heteroscedasticity |
| keywords[1].score | 0.7249322533607483 |
| keywords[1].display_name | Heteroscedasticity |
| keywords[2].id | https://openalex.org/keywords/nonparametric-statistics |
| keywords[2].score | 0.6928163766860962 |
| keywords[2].display_name | Nonparametric statistics |
| keywords[3].id | https://openalex.org/keywords/semiparametric-regression |
| keywords[3].score | 0.5611513257026672 |
| keywords[3].display_name | Semiparametric regression |
| keywords[4].id | https://openalex.org/keywords/kernel-regression |
| keywords[4].score | 0.4623035192489624 |
| keywords[4].display_name | Kernel regression |
| keywords[5].id | https://openalex.org/keywords/regression-analysis |
| keywords[5].score | 0.42898210883140564 |
| keywords[5].display_name | Regression analysis |
| keywords[6].id | https://openalex.org/keywords/robust-regression |
| keywords[6].score | 0.40645891427993774 |
| keywords[6].display_name | Robust regression |
| keywords[7].id | https://openalex.org/keywords/regression |
| keywords[7].score | 0.3533973693847656 |
| keywords[7].display_name | Regression |
| keywords[8].id | https://openalex.org/keywords/goldfeld–quandt-test |
| keywords[8].score | 0.3468180000782013 |
| keywords[8].display_name | Goldfeld–Quandt test |
| language | en |
| locations[0].id | pmh:oai:ojs2.pjsor.com:article/4746 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | Peer-reviewed Article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | 10.18187/pjsor.v21i4 |
| locations[0].landing_page_url | https://pjsor.com/pjsor/article/view/4746 |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Khan, Javaria Ahmad |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Khan, Javaria Ahmad |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Akbar, Atif |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Akbar, Atif |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ejaz, Muhammad |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ejaz, Muhammad |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pjsor.com/pjsor/article/view/4746 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-14T00:00:00 |
| display_name | Empirical Performance of Nonparametric Regression with Heteroscedasticity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-14T23:14:51.672866 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:ojs2.pjsor.com:article/4746 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | Peer-reviewed Article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | 10.18187/pjsor.v21i4 |
| best_oa_location.landing_page_url | https://pjsor.com/pjsor/article/view/4746 |
| primary_location.id | pmh:oai:ojs2.pjsor.com:article/4746 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | Peer-reviewed Article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | 10.18187/pjsor.v21i4 |
| primary_location.landing_page_url | https://pjsor.com/pjsor/article/view/4746 |
| publication_date | 2025-12-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 19, 46, 81 |
| abstract_inverted_index.In | 12, 26 |
| abstract_inverted_index.We | 58 |
| abstract_inverted_index.an | 6 |
| abstract_inverted_index.at | 126 |
| abstract_inverted_index.in | 8, 37, 141 |
| abstract_inverted_index.is | 1, 24, 45, 78, 130 |
| abstract_inverted_index.of | 5, 34, 40, 63, 95, 107, 146 |
| abstract_inverted_index.on | 87, 104 |
| abstract_inverted_index.to | 15 |
| abstract_inverted_index.we | 29, 133 |
| abstract_inverted_index.The | 93 |
| abstract_inverted_index.and | 84, 132, 144 |
| abstract_inverted_index.are | 113 |
| abstract_inverted_index.our | 136 |
| abstract_inverted_index.per | 89 |
| abstract_inverted_index.six | 85 |
| abstract_inverted_index.the | 32, 38, 56, 61, 64, 105 |
| abstract_inverted_index.was | 101 |
| abstract_inverted_index.also | 114 |
| abstract_inverted_index.best | 140 |
| abstract_inverted_index.both | 142 |
| abstract_inverted_index.case | 39 |
| abstract_inverted_index.from | 55 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.mean | 108 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.that | 49, 135 |
| abstract_inverted_index.this | 17, 27 |
| abstract_inverted_index.used | 79 |
| abstract_inverted_index.with | 69, 80, 98, 116, 123 |
| abstract_inverted_index.basis | 106 |
| abstract_inverted_index.found | 102, 134 |
| abstract_inverted_index.least | 21, 66 |
| abstract_inverted_index.their | 117 |
| abstract_inverted_index.used. | 25 |
| abstract_inverted_index.where | 120 |
| abstract_inverted_index.better | 103 |
| abstract_inverted_index.capita | 90 |
| abstract_inverted_index.cases, | 14 |
| abstract_inverted_index.error. | 110 |
| abstract_inverted_index.handle | 16 |
| abstract_inverted_index.kernel | 72, 76, 83 |
| abstract_inverted_index.levels | 129 |
| abstract_inverted_index.method | 23, 48, 68, 138 |
| abstract_inverted_index.robust | 47 |
| abstract_inverted_index.China's | 88 |
| abstract_inverted_index.absence | 145 |
| abstract_inverted_index.errors. | 42 |
| abstract_inverted_index.results | 112 |
| abstract_inverted_index.squared | 109 |
| abstract_inverted_index.squares | 22, 67 |
| abstract_inverted_index.without | 51 |
| abstract_inverted_index.Bayesian | 99 |
| abstract_inverted_index.Gaussian | 82 |
| abstract_inverted_index.article, | 28 |
| abstract_inverted_index.compared | 60 |
| abstract_inverted_index.presence | 143 |
| abstract_inverted_index.problem, | 18 |
| abstract_inverted_index.proceeds | 50 |
| abstract_inverted_index.proposed | 137 |
| abstract_inverted_index.analysis. | 11 |
| abstract_inverted_index.bandwidth | 100 |
| abstract_inverted_index.different | 124, 127 |
| abstract_inverted_index.graphical | 118 |
| abstract_inverted_index.observed, | 131 |
| abstract_inverted_index.performed | 139 |
| abstract_inverted_index.requiring | 52 |
| abstract_inverted_index.violation | 4 |
| abstract_inverted_index.Simulation | 111 |
| abstract_inverted_index.assumption | 7 |
| abstract_inverted_index.bandwidths | 86, 125 |
| abstract_inverted_index.inflexible | 53 |
| abstract_inverted_index.manifested | 31 |
| abstract_inverted_index.parametric | 9 |
| abstract_inverted_index.presented, | 115 |
| abstract_inverted_index.regression | 10, 36, 44, 77, 97, 122 |
| abstract_inverted_index.robustness | 33 |
| abstract_inverted_index.well-known | 3 |
| abstract_inverted_index.assumptions | 54 |
| abstract_inverted_index.consumption | 91 |
| abstract_inverted_index.empirically | 59 |
| abstract_inverted_index.generalized | 20, 65 |
| abstract_inverted_index.performance | 62, 94 |
| abstract_inverted_index.regression. | 73 |
| abstract_inverted_index.Multivariate | 74 |
| abstract_inverted_index.expenditure. | 92 |
| abstract_inverted_index.model. | 57 |
| abstract_inverted_index.multivariate | 70 |
| abstract_inverted_index.Nonparametric | 43 |
| abstract_inverted_index.nonparametric | 35, 71, 75, 96, 121 |
| abstract_inverted_index.heteroscedastic | 41, 128 |
| abstract_inverted_index.representation, | 119 |
| abstract_inverted_index.homoscedasticity. | 147 |
| abstract_inverted_index.Heteroscedasticity | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |