Employing Artificial Intelligence Methods in Drug Development: A New Era in Medicine Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.58496/mjaih/2023/010
Artificial intelligence (AI) plays a vital role in the development of pharmaceuticals. The whole drug development process, from target identification and lead optimization to clinical trials and post-marketing monitoring, has the potential to be revolutionized by AI. Data analysis is a crucial area where AI thrives. To find trends, correlations, and prospective targets for therapeutic intervention, AI systems can analyse enormous volumes of data, including electronic health records, molecular databases, academic literature, and clinical trial data. This saves time and resources by enabling researchers to decide which compounds or pathways to investigate. Lead optimization is another area where AI is essential since algorithms can screen and forecast the efficacy of new drug candidates. To improve efficacy, safety, and pharmacokinetics, the most promising leads are prioritized, and their attributes are optimized. By examining past data to pinpoint patient groupings that are most likely to respond to a certain medication, AI can also improve clinical trial design and patient selection. This advances success rates aids in the development of personalized medication and can support post-marketing surveillance by continuously scanning real-world data for adverse events or unexpected drug-drug interactions after a medicine has been licensed. This permits the quicker detection of potential safety issues and contributes to maintaining the continuous safety of licensed medications. However, some obstacles must be overcome to completely utilize AI in medication development. These include the requirement for high-quality data, assuring AI model transparency and interpretability, taking into account ethical issues, and regulatory frameworks for using AI in drug development.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.58496/mjaih/2023/010
- https://journals.mesopotamian.press/index.php/MJAIH/article/download/129/131
- OA Status
- diamond
- Cited By
- 15
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388980802
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388980802Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.58496/mjaih/2023/010Digital Object Identifier
- Title
-
Employing Artificial Intelligence Methods in Drug Development: A New Era in MedicineWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-20Full publication date if available
- Authors
-
Omega John Unogwu, Mabel Ike, Opkanachi Omatule JoktanList of authors in order
- Landing page
-
https://doi.org/10.58496/mjaih/2023/010Publisher landing page
- PDF URL
-
https://journals.mesopotamian.press/index.php/MJAIH/article/download/129/131Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://journals.mesopotamian.press/index.php/MJAIH/article/download/129/131Direct OA link when available
- Concepts
-
Interpretability, Drug development, Risk analysis (engineering), Identification (biology), Clinical trial, Computer science, Transparency (behavior), Pharmacovigilance, Data science, Artificial intelligence, Drug, Medicine, Pharmacology, Computer security, Botany, Pathology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 3, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388980802 |
|---|---|
| doi | https://doi.org/10.58496/mjaih/2023/010 |
| ids.doi | https://doi.org/10.58496/mjaih/2023/010 |
| ids.openalex | https://openalex.org/W4388980802 |
| fwci | 4.63441806 |
| type | article |
| title | Employing Artificial Intelligence Methods in Drug Development: A New Era in Medicine |
| biblio.issue | |
| biblio.volume | 2023 |
| biblio.last_page | 56 |
| biblio.first_page | 52 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9922999739646912 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T12255 |
| topics[1].field.id | https://openalex.org/fields/24 |
| topics[1].field.display_name | Immunology and Microbiology |
| topics[1].score | 0.9815000295639038 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2403 |
| topics[1].subfield.display_name | Immunology |
| topics[1].display_name | Biosimilars and Bioanalytical Methods |
| topics[2].id | https://openalex.org/T11235 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9301000237464905 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods in Clinical Trials |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6691818237304688 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C64903051 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6405209898948669 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2198549 |
| concepts[1].display_name | Drug development |
| concepts[2].id | https://openalex.org/C112930515 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5170776844024658 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4389547 |
| concepts[2].display_name | Risk analysis (engineering) |
| concepts[3].id | https://openalex.org/C116834253 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5104174017906189 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[3].display_name | Identification (biology) |
| concepts[4].id | https://openalex.org/C535046627 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49175789952278137 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30612 |
| concepts[4].display_name | Clinical trial |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.47232240438461304 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C2780233690 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4593762159347534 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q535347 |
| concepts[6].display_name | Transparency (behavior) |
| concepts[7].id | https://openalex.org/C57658597 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4261564612388611 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1550789 |
| concepts[7].display_name | Pharmacovigilance |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4054436981678009 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.396994024515152 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C2780035454 |
| concepts[10].level | 2 |
| concepts[10].score | 0.38407933712005615 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[10].display_name | Drug |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.35738176107406616 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C98274493 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1967202126979828 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q128406 |
| concepts[12].display_name | Pharmacology |
| concepts[13].id | https://openalex.org/C38652104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10369646549224854 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[13].display_name | Computer security |
| concepts[14].id | https://openalex.org/C59822182 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[14].display_name | Botany |
| concepts[15].id | https://openalex.org/C142724271 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[15].display_name | Pathology |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.6691818237304688 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/drug-development |
| keywords[1].score | 0.6405209898948669 |
| keywords[1].display_name | Drug development |
| keywords[2].id | https://openalex.org/keywords/risk-analysis |
| keywords[2].score | 0.5170776844024658 |
| keywords[2].display_name | Risk analysis (engineering) |
| keywords[3].id | https://openalex.org/keywords/identification |
| keywords[3].score | 0.5104174017906189 |
| keywords[3].display_name | Identification (biology) |
| keywords[4].id | https://openalex.org/keywords/clinical-trial |
| keywords[4].score | 0.49175789952278137 |
| keywords[4].display_name | Clinical trial |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.47232240438461304 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/transparency |
| keywords[6].score | 0.4593762159347534 |
| keywords[6].display_name | Transparency (behavior) |
| keywords[7].id | https://openalex.org/keywords/pharmacovigilance |
| keywords[7].score | 0.4261564612388611 |
| keywords[7].display_name | Pharmacovigilance |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.4054436981678009 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.396994024515152 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/drug |
| keywords[10].score | 0.38407933712005615 |
| keywords[10].display_name | Drug |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.35738176107406616 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/pharmacology |
| keywords[12].score | 0.1967202126979828 |
| keywords[12].display_name | Pharmacology |
| keywords[13].id | https://openalex.org/keywords/computer-security |
| keywords[13].score | 0.10369646549224854 |
| keywords[13].display_name | Computer security |
| language | en |
| locations[0].id | doi:10.58496/mjaih/2023/010 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4389158193 |
| locations[0].source.issn | 3005-365X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 3005-365X |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Mesopotamian Journal of Artificial Intelligence in Healthcare |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.mesopotamian.press/index.php/MJAIH/article/download/129/131 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mesopotamian Journal of Artificial Intelligence in Healthcare |
| locations[0].landing_page_url | https://doi.org/10.58496/mjaih/2023/010 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5078396091 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6415-8892 |
| authorships[0].author.display_name | Omega John Unogwu |
| authorships[0].countries | MX |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I301027571 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Universidad Azteca, Chalco, Mexico |
| authorships[0].institutions[0].id | https://openalex.org/I301027571 |
| authorships[0].institutions[0].ror | https://ror.org/01r98zz61 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I301027571 |
| authorships[0].institutions[0].country_code | MX |
| authorships[0].institutions[0].display_name | Universidad Azteca |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Omega John Unogwu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Universidad Azteca, Chalco, Mexico |
| authorships[1].author.id | https://openalex.org/A5093333190 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-1899-0313 |
| authorships[1].author.display_name | Mabel Ike |
| authorships[1].countries | NG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I161374704 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Zoology, University of Jos, DEE Medical Center, Jos, Plateau State, Nigeria |
| authorships[1].institutions[0].id | https://openalex.org/I161374704 |
| authorships[1].institutions[0].ror | https://ror.org/009kx9832 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I161374704 |
| authorships[1].institutions[0].country_code | NG |
| authorships[1].institutions[0].display_name | University of Jos |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mabel Ike |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Zoology, University of Jos, DEE Medical Center, Jos, Plateau State, Nigeria |
| authorships[2].author.id | https://openalex.org/A5093333191 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Opkanachi Omatule Joktan |
| authorships[2].countries | NG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210087579 |
| authorships[2].affiliations[0].raw_affiliation_string | Engineering Systems & Data Operations Unit, Space Geodesy & Systems Division, Centre for Geodesy & Geodynamics, NASRDA, Toro, Nigeria |
| authorships[2].institutions[0].id | https://openalex.org/I4210087579 |
| authorships[2].institutions[0].ror | https://ror.org/005epk420 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I2801477186, https://openalex.org/I4210087579, https://openalex.org/I4210122850 |
| authorships[2].institutions[0].country_code | NG |
| authorships[2].institutions[0].display_name | National Space Research and Development Agency |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Opkanachi Omatule Joktan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Engineering Systems & Data Operations Unit, Space Geodesy & Systems Division, Centre for Geodesy & Geodynamics, NASRDA, Toro, Nigeria |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.mesopotamian.press/index.php/MJAIH/article/download/129/131 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Employing Artificial Intelligence Methods in Drug Development: A New Era in Medicine |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9922999739646912 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W4390569940, https://openalex.org/W2888392564, https://openalex.org/W4361193272, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W2806259446, https://openalex.org/W2963326959, https://openalex.org/W2470067656, https://openalex.org/W2188607138 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.58496/mjaih/2023/010 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4389158193 |
| best_oa_location.source.issn | 3005-365X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 3005-365X |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Mesopotamian Journal of Artificial Intelligence in Healthcare |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.mesopotamian.press/index.php/MJAIH/article/download/129/131 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mesopotamian Journal of Artificial Intelligence in Healthcare |
| best_oa_location.landing_page_url | https://doi.org/10.58496/mjaih/2023/010 |
| primary_location.id | doi:10.58496/mjaih/2023/010 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4389158193 |
| primary_location.source.issn | 3005-365X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 3005-365X |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Mesopotamian Journal of Artificial Intelligence in Healthcare |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.mesopotamian.press/index.php/MJAIH/article/download/129/131 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mesopotamian Journal of Artificial Intelligence in Healthcare |
| primary_location.landing_page_url | https://doi.org/10.58496/mjaih/2023/010 |
| publication_date | 2023-10-20 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4220681836, https://openalex.org/W4367297028, https://openalex.org/W4291288469, https://openalex.org/W4200608622, https://openalex.org/W4297231385, https://openalex.org/W4379374005, https://openalex.org/W4386894187, https://openalex.org/W4318752607, https://openalex.org/W4313346475, https://openalex.org/W4386574220, https://openalex.org/W4385732850, https://openalex.org/W4387189797, https://openalex.org/W4384526017, https://openalex.org/W4383552219, https://openalex.org/W4385246972, https://openalex.org/W4319993048, https://openalex.org/W4385897341, https://openalex.org/W4206247747, https://openalex.org/W4387195461, https://openalex.org/W4387315580, https://openalex.org/W4383618712, https://openalex.org/W4387538324, https://openalex.org/W3021613067, https://openalex.org/W4311537573, https://openalex.org/W4322621757 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 4, 40, 145, 187 |
| abstract_inverted_index.AI | 44, 56, 98, 148, 220, 232, 247 |
| abstract_inverted_index.By | 130 |
| abstract_inverted_index.To | 46, 113 |
| abstract_inverted_index.be | 33, 215 |
| abstract_inverted_index.by | 35, 81, 174 |
| abstract_inverted_index.in | 7, 163, 221, 248 |
| abstract_inverted_index.is | 39, 94, 99 |
| abstract_inverted_index.of | 10, 62, 109, 166, 197, 208 |
| abstract_inverted_index.or | 88, 182 |
| abstract_inverted_index.to | 23, 32, 84, 90, 134, 142, 144, 203, 217 |
| abstract_inverted_index.AI. | 36 |
| abstract_inverted_index.The | 12 |
| abstract_inverted_index.and | 20, 26, 50, 72, 79, 105, 117, 125, 155, 169, 201, 235, 242 |
| abstract_inverted_index.are | 123, 128, 139 |
| abstract_inverted_index.can | 58, 103, 149, 170 |
| abstract_inverted_index.for | 53, 179, 228, 245 |
| abstract_inverted_index.has | 29, 189 |
| abstract_inverted_index.new | 110 |
| abstract_inverted_index.the | 8, 30, 107, 119, 164, 194, 205, 226 |
| abstract_inverted_index.(AI) | 2 |
| abstract_inverted_index.Data | 37 |
| abstract_inverted_index.Lead | 92 |
| abstract_inverted_index.This | 76, 158, 192 |
| abstract_inverted_index.aids | 162 |
| abstract_inverted_index.also | 150 |
| abstract_inverted_index.area | 42, 96 |
| abstract_inverted_index.been | 190 |
| abstract_inverted_index.data | 133, 178 |
| abstract_inverted_index.drug | 14, 111, 249 |
| abstract_inverted_index.find | 47 |
| abstract_inverted_index.from | 17 |
| abstract_inverted_index.into | 238 |
| abstract_inverted_index.lead | 21 |
| abstract_inverted_index.most | 120, 140 |
| abstract_inverted_index.must | 214 |
| abstract_inverted_index.past | 132 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.some | 212 |
| abstract_inverted_index.that | 138 |
| abstract_inverted_index.time | 78 |
| abstract_inverted_index.These | 224 |
| abstract_inverted_index.after | 186 |
| abstract_inverted_index.data, | 63, 230 |
| abstract_inverted_index.data. | 75 |
| abstract_inverted_index.leads | 122 |
| abstract_inverted_index.model | 233 |
| abstract_inverted_index.plays | 3 |
| abstract_inverted_index.rates | 161 |
| abstract_inverted_index.saves | 77 |
| abstract_inverted_index.since | 101 |
| abstract_inverted_index.their | 126 |
| abstract_inverted_index.trial | 74, 153 |
| abstract_inverted_index.using | 246 |
| abstract_inverted_index.vital | 5 |
| abstract_inverted_index.where | 43, 97 |
| abstract_inverted_index.which | 86 |
| abstract_inverted_index.whole | 13 |
| abstract_inverted_index.decide | 85 |
| abstract_inverted_index.design | 154 |
| abstract_inverted_index.events | 181 |
| abstract_inverted_index.health | 66 |
| abstract_inverted_index.issues | 200 |
| abstract_inverted_index.likely | 141 |
| abstract_inverted_index.safety | 199, 207 |
| abstract_inverted_index.screen | 104 |
| abstract_inverted_index.taking | 237 |
| abstract_inverted_index.target | 18 |
| abstract_inverted_index.trials | 25 |
| abstract_inverted_index.account | 239 |
| abstract_inverted_index.adverse | 180 |
| abstract_inverted_index.analyse | 59 |
| abstract_inverted_index.another | 95 |
| abstract_inverted_index.certain | 146 |
| abstract_inverted_index.crucial | 41 |
| abstract_inverted_index.ethical | 240 |
| abstract_inverted_index.improve | 114, 151 |
| abstract_inverted_index.include | 225 |
| abstract_inverted_index.issues, | 241 |
| abstract_inverted_index.patient | 136, 156 |
| abstract_inverted_index.permits | 193 |
| abstract_inverted_index.quicker | 195 |
| abstract_inverted_index.respond | 143 |
| abstract_inverted_index.safety, | 116 |
| abstract_inverted_index.success | 160 |
| abstract_inverted_index.support | 171 |
| abstract_inverted_index.systems | 57 |
| abstract_inverted_index.targets | 52 |
| abstract_inverted_index.trends, | 48 |
| abstract_inverted_index.utilize | 219 |
| abstract_inverted_index.volumes | 61 |
| abstract_inverted_index.However, | 211 |
| abstract_inverted_index.academic | 70 |
| abstract_inverted_index.advances | 159 |
| abstract_inverted_index.analysis | 38 |
| abstract_inverted_index.assuring | 231 |
| abstract_inverted_index.clinical | 24, 73, 152 |
| abstract_inverted_index.efficacy | 108 |
| abstract_inverted_index.enabling | 82 |
| abstract_inverted_index.enormous | 60 |
| abstract_inverted_index.forecast | 106 |
| abstract_inverted_index.licensed | 209 |
| abstract_inverted_index.medicine | 188 |
| abstract_inverted_index.overcome | 216 |
| abstract_inverted_index.pathways | 89 |
| abstract_inverted_index.pinpoint | 135 |
| abstract_inverted_index.process, | 16 |
| abstract_inverted_index.records, | 67 |
| abstract_inverted_index.scanning | 176 |
| abstract_inverted_index.thrives. | 45 |
| abstract_inverted_index.compounds | 87 |
| abstract_inverted_index.detection | 196 |
| abstract_inverted_index.drug-drug | 184 |
| abstract_inverted_index.efficacy, | 115 |
| abstract_inverted_index.essential | 100 |
| abstract_inverted_index.examining | 131 |
| abstract_inverted_index.groupings | 137 |
| abstract_inverted_index.including | 64 |
| abstract_inverted_index.licensed. | 191 |
| abstract_inverted_index.molecular | 68 |
| abstract_inverted_index.obstacles | 213 |
| abstract_inverted_index.potential | 31, 198 |
| abstract_inverted_index.promising | 121 |
| abstract_inverted_index.resources | 80 |
| abstract_inverted_index.Artificial | 0 |
| abstract_inverted_index.algorithms | 102 |
| abstract_inverted_index.attributes | 127 |
| abstract_inverted_index.completely | 218 |
| abstract_inverted_index.continuous | 206 |
| abstract_inverted_index.databases, | 69 |
| abstract_inverted_index.electronic | 65 |
| abstract_inverted_index.frameworks | 244 |
| abstract_inverted_index.medication | 168, 222 |
| abstract_inverted_index.optimized. | 129 |
| abstract_inverted_index.real-world | 177 |
| abstract_inverted_index.regulatory | 243 |
| abstract_inverted_index.selection. | 157 |
| abstract_inverted_index.unexpected | 183 |
| abstract_inverted_index.candidates. | 112 |
| abstract_inverted_index.contributes | 202 |
| abstract_inverted_index.development | 9, 15, 165 |
| abstract_inverted_index.literature, | 71 |
| abstract_inverted_index.maintaining | 204 |
| abstract_inverted_index.medication, | 147 |
| abstract_inverted_index.monitoring, | 28 |
| abstract_inverted_index.prospective | 51 |
| abstract_inverted_index.requirement | 227 |
| abstract_inverted_index.researchers | 83 |
| abstract_inverted_index.therapeutic | 54 |
| abstract_inverted_index.continuously | 175 |
| abstract_inverted_index.development. | 223, 250 |
| abstract_inverted_index.high-quality | 229 |
| abstract_inverted_index.intelligence | 1 |
| abstract_inverted_index.interactions | 185 |
| abstract_inverted_index.investigate. | 91 |
| abstract_inverted_index.medications. | 210 |
| abstract_inverted_index.optimization | 22, 93 |
| abstract_inverted_index.personalized | 167 |
| abstract_inverted_index.prioritized, | 124 |
| abstract_inverted_index.surveillance | 173 |
| abstract_inverted_index.transparency | 234 |
| abstract_inverted_index.correlations, | 49 |
| abstract_inverted_index.intervention, | 55 |
| abstract_inverted_index.identification | 19 |
| abstract_inverted_index.post-marketing | 27, 172 |
| abstract_inverted_index.revolutionized | 34 |
| abstract_inverted_index.pharmaceuticals. | 11 |
| abstract_inverted_index.interpretability, | 236 |
| abstract_inverted_index.pharmacokinetics, | 118 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.94250943 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |