Employing deep learning in non‐parametric inverse visualization of elastic–plastic mechanisms in dual‐phase steels Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1002/mgea.29
Enhancing the interpretability of machine learning methods for predicting material properties is a key, yet complex topic in materials science. This study proposes an interpretable convolutional neural network (CNN) to establish the relationship between the microstructural evolution and mechanical properties of non‐uniform and nonlinear multisystem dual‐phase steel materials and achieve an inverse analysis of the elastic‐plastic mechanism. This study demonstrates that the developed CNN model achieves an accuracy of 94% in predicting the stress‐strain curves of dual‐phase steel microstructures with different compositions and processes, with the mean absolute error not exceeding 50 MPa, representing merely 5.26% of the average tensile strength of dual‐phase steels in the dataset. The reverse visualization results of the CNN model indicate that, during tensile deformation, the grain boundaries maintain deformation coordination within the grains by impeding dislocation slip. This results in a significant stress concentration at the grain boundaries, with stresses at the boundaries being higher than those borne by the martensitic phase and minimal stresses in the ferrite phase. Moreover, compared with traditional crystal plasticity models, the CNN model exhibits a substantial improvement in computational efficiency. This method provides a generic plan for improving the interpretability of machine learning methods for predicting material properties and can be easily applied to other alloy systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/mgea.29
- OA Status
- diamond
- Cited By
- 12
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392964153
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392964153Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/mgea.29Digital Object Identifier
- Title
-
Employing deep learning in non‐parametric inverse visualization of elastic–plastic mechanisms in dual‐phase steelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-01Full publication date if available
- Authors
-
Siyu Han, Chenchong Wang, Yu Zhang, Wei Xu, Hongshuang DiList of authors in order
- Landing page
-
https://doi.org/10.1002/mgea.29Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1002/mgea.29Direct OA link when available
- Concepts
-
Dual (grammatical number), Visualization, Inverse, Phase (matter), Parametric statistics, Materials science, Artificial intelligence, Computer science, Physics, Mathematics, Statistics, Geometry, Philosophy, Quantum mechanics, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 6Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392964153 |
|---|---|
| doi | https://doi.org/10.1002/mgea.29 |
| ids.doi | https://doi.org/10.1002/mgea.29 |
| ids.openalex | https://openalex.org/W4392964153 |
| fwci | 4.89983922 |
| type | article |
| title | Employing deep learning in non‐parametric inverse visualization of elastic–plastic mechanisms in dual‐phase steels |
| biblio.issue | 1 |
| biblio.volume | 2 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10386 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Microstructure and Mechanical Properties of Steels |
| topics[1].id | https://openalex.org/T10834 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Welding Techniques and Residual Stresses |
| topics[2].id | https://openalex.org/T10736 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9958000183105469 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2506 |
| topics[2].subfield.display_name | Metals and Alloys |
| topics[2].display_name | Hydrogen embrittlement and corrosion behaviors in metals |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780980858 |
| concepts[0].level | 2 |
| concepts[0].score | 0.773912250995636 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[0].display_name | Dual (grammatical number) |
| concepts[1].id | https://openalex.org/C36464697 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6259381771087646 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[1].display_name | Visualization |
| concepts[2].id | https://openalex.org/C207467116 |
| concepts[2].level | 2 |
| concepts[2].score | 0.576068103313446 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4385666 |
| concepts[2].display_name | Inverse |
| concepts[3].id | https://openalex.org/C44280652 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5550817251205444 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q104837 |
| concepts[3].display_name | Phase (matter) |
| concepts[4].id | https://openalex.org/C117251300 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5405333042144775 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[4].display_name | Parametric statistics |
| concepts[5].id | https://openalex.org/C192562407 |
| concepts[5].level | 0 |
| concepts[5].score | 0.47198134660720825 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[5].display_name | Materials science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40594425797462463 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.38887184858322144 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.18188083171844482 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16322454810142517 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.11093190312385559 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09501615166664124 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07946357131004333 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/dual |
| keywords[0].score | 0.773912250995636 |
| keywords[0].display_name | Dual (grammatical number) |
| keywords[1].id | https://openalex.org/keywords/visualization |
| keywords[1].score | 0.6259381771087646 |
| keywords[1].display_name | Visualization |
| keywords[2].id | https://openalex.org/keywords/inverse |
| keywords[2].score | 0.576068103313446 |
| keywords[2].display_name | Inverse |
| keywords[3].id | https://openalex.org/keywords/phase |
| keywords[3].score | 0.5550817251205444 |
| keywords[3].display_name | Phase (matter) |
| keywords[4].id | https://openalex.org/keywords/parametric-statistics |
| keywords[4].score | 0.5405333042144775 |
| keywords[4].display_name | Parametric statistics |
| keywords[5].id | https://openalex.org/keywords/materials-science |
| keywords[5].score | 0.47198134660720825 |
| keywords[5].display_name | Materials science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.40594425797462463 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.38887184858322144 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.18188083171844482 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.16322454810142517 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.11093190312385559 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/geometry |
| keywords[11].score | 0.09501615166664124 |
| keywords[11].display_name | Geometry |
| keywords[12].id | https://openalex.org/keywords/philosophy |
| keywords[12].score | 0.07946357131004333 |
| keywords[12].display_name | Philosophy |
| language | en |
| locations[0].id | doi:10.1002/mgea.29 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387292499 |
| locations[0].source.issn | 2940-9489, 2940-9497 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2940-9489 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Materials Genome Engineering Advances |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Materials Genome Engineering Advances |
| locations[0].landing_page_url | https://doi.org/10.1002/mgea.29 |
| locations[1].id | pmh:oai:doaj.org/article:c8e696684de14a80a754f5157de85232 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Materials Genome Engineering Advances, Vol 2, Iss 1, Pp n/a-n/a (2024) |
| locations[1].landing_page_url | https://doaj.org/article/c8e696684de14a80a754f5157de85232 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5006922566 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8709-5564 |
| authorships[0].author.display_name | Siyu Han |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Rolling and Automation Northeastern University Shenyang Liaoning China |
| authorships[0].institutions[0].id | https://openalex.org/I9224756 |
| authorships[0].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Siyu Han |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Rolling and Automation Northeastern University Shenyang Liaoning China |
| authorships[1].author.id | https://openalex.org/A5103057717 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chenchong Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Rolling and Automation Northeastern University Shenyang Liaoning China |
| authorships[1].institutions[0].id | https://openalex.org/I9224756 |
| authorships[1].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chenchong Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Rolling and Automation Northeastern University Shenyang Liaoning China |
| authorships[2].author.id | https://openalex.org/A5100433581 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5848-8892 |
| authorships[2].author.display_name | Yu Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210094030 |
| authorships[2].affiliations[0].raw_affiliation_string | Ansteel Group Beijing Research Institute Beijing China |
| authorships[2].institutions[0].id | https://openalex.org/I4210094030 |
| authorships[2].institutions[0].ror | https://ror.org/00sgtyj59 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210094030 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Ansteel (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ansteel Group Beijing Research Institute Beijing China |
| authorships[3].author.id | https://openalex.org/A5101714123 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4615-545X |
| authorships[3].author.display_name | Wei Xu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Rolling and Automation Northeastern University Shenyang Liaoning China |
| authorships[3].institutions[0].id | https://openalex.org/I9224756 |
| authorships[3].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wei Xu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Rolling and Automation Northeastern University Shenyang Liaoning China |
| authorships[4].author.id | https://openalex.org/A5103777328 |
| authorships[4].author.orcid | https://orcid.org/0009-0008-8751-8844 |
| authorships[4].author.display_name | Hongshuang Di |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory of Rolling and Automation Northeastern University Shenyang Liaoning China |
| authorships[4].institutions[0].id | https://openalex.org/I9224756 |
| authorships[4].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Northeastern University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hongshuang Di |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Key Laboratory of Rolling and Automation Northeastern University Shenyang Liaoning China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1002/mgea.29 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Employing deep learning in non‐parametric inverse visualization of elastic–plastic mechanisms in dual‐phase steels |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10386 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Microstructure and Mechanical Properties of Steels |
| related_works | https://openalex.org/W2068608913, https://openalex.org/W3124914020, https://openalex.org/W2141033859, https://openalex.org/W2077542787, https://openalex.org/W2156434174, https://openalex.org/W2071701083, https://openalex.org/W2383687187, https://openalex.org/W2070401501, https://openalex.org/W2121496884, https://openalex.org/W2387910809 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1002/mgea.29 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387292499 |
| best_oa_location.source.issn | 2940-9489, 2940-9497 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2940-9489 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Materials Genome Engineering Advances |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Materials Genome Engineering Advances |
| best_oa_location.landing_page_url | https://doi.org/10.1002/mgea.29 |
| primary_location.id | doi:10.1002/mgea.29 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387292499 |
| primary_location.source.issn | 2940-9489, 2940-9497 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2940-9489 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Materials Genome Engineering Advances |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Materials Genome Engineering Advances |
| primary_location.landing_page_url | https://doi.org/10.1002/mgea.29 |
| publication_date | 2024-03-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2888664978, https://openalex.org/W2895720181, https://openalex.org/W4284991460, https://openalex.org/W4384406722, https://openalex.org/W4220944739, https://openalex.org/W4310134823, https://openalex.org/W2905328281, https://openalex.org/W3114692006, https://openalex.org/W4280634006, https://openalex.org/W2984302120, https://openalex.org/W3109615746, https://openalex.org/W4200306381, https://openalex.org/W2967459141, https://openalex.org/W2760710953, https://openalex.org/W4366144298, https://openalex.org/W2919115771, https://openalex.org/W1686810756, https://openalex.org/W2884675507, https://openalex.org/W2904871403, https://openalex.org/W2962734882, https://openalex.org/W2944433988, https://openalex.org/W4379526042, https://openalex.org/W3021970402, https://openalex.org/W2053825107, https://openalex.org/W2048225831, https://openalex.org/W2052847125, https://openalex.org/W4317503811, https://openalex.org/W4280616765, https://openalex.org/W4386170831, https://openalex.org/W4283077979, https://openalex.org/W4285028398 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 13, 137, 177, 186 |
| abstract_inverted_index.50 | 92 |
| abstract_inverted_index.an | 24, 51, 67 |
| abstract_inverted_index.at | 141, 147 |
| abstract_inverted_index.be | 203 |
| abstract_inverted_index.by | 130, 155 |
| abstract_inverted_index.in | 18, 71, 105, 136, 162, 180 |
| abstract_inverted_index.is | 12 |
| abstract_inverted_index.of | 4, 41, 54, 69, 76, 97, 102, 112, 193 |
| abstract_inverted_index.to | 30, 206 |
| abstract_inverted_index.94% | 70 |
| abstract_inverted_index.CNN | 64, 114, 174 |
| abstract_inverted_index.The | 108 |
| abstract_inverted_index.and | 38, 43, 49, 83, 159, 201 |
| abstract_inverted_index.can | 202 |
| abstract_inverted_index.for | 8, 189, 197 |
| abstract_inverted_index.not | 90 |
| abstract_inverted_index.the | 2, 32, 35, 55, 62, 73, 86, 98, 106, 113, 121, 128, 142, 148, 156, 163, 173, 191 |
| abstract_inverted_index.yet | 15 |
| abstract_inverted_index.MPa, | 93 |
| abstract_inverted_index.This | 21, 58, 134, 183 |
| abstract_inverted_index.key, | 14 |
| abstract_inverted_index.mean | 87 |
| abstract_inverted_index.plan | 188 |
| abstract_inverted_index.than | 152 |
| abstract_inverted_index.that | 61 |
| abstract_inverted_index.with | 80, 85, 145, 168 |
| abstract_inverted_index.(CNN) | 29 |
| abstract_inverted_index.5.26% | 96 |
| abstract_inverted_index.alloy | 208 |
| abstract_inverted_index.being | 150 |
| abstract_inverted_index.borne | 154 |
| abstract_inverted_index.error | 89 |
| abstract_inverted_index.grain | 122, 143 |
| abstract_inverted_index.model | 65, 115, 175 |
| abstract_inverted_index.other | 207 |
| abstract_inverted_index.phase | 158 |
| abstract_inverted_index.slip. | 133 |
| abstract_inverted_index.steel | 47, 78 |
| abstract_inverted_index.study | 22, 59 |
| abstract_inverted_index.that, | 117 |
| abstract_inverted_index.those | 153 |
| abstract_inverted_index.topic | 17 |
| abstract_inverted_index.curves | 75 |
| abstract_inverted_index.during | 118 |
| abstract_inverted_index.easily | 204 |
| abstract_inverted_index.grains | 129 |
| abstract_inverted_index.higher | 151 |
| abstract_inverted_index.merely | 95 |
| abstract_inverted_index.method | 184 |
| abstract_inverted_index.neural | 27 |
| abstract_inverted_index.phase. | 165 |
| abstract_inverted_index.steels | 104 |
| abstract_inverted_index.stress | 139 |
| abstract_inverted_index.within | 127 |
| abstract_inverted_index.achieve | 50 |
| abstract_inverted_index.applied | 205 |
| abstract_inverted_index.average | 99 |
| abstract_inverted_index.between | 34 |
| abstract_inverted_index.complex | 16 |
| abstract_inverted_index.crystal | 170 |
| abstract_inverted_index.ferrite | 164 |
| abstract_inverted_index.generic | 187 |
| abstract_inverted_index.inverse | 52 |
| abstract_inverted_index.machine | 5, 194 |
| abstract_inverted_index.methods | 7, 196 |
| abstract_inverted_index.minimal | 160 |
| abstract_inverted_index.models, | 172 |
| abstract_inverted_index.network | 28 |
| abstract_inverted_index.results | 111, 135 |
| abstract_inverted_index.reverse | 109 |
| abstract_inverted_index.tensile | 100, 119 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.absolute | 88 |
| abstract_inverted_index.accuracy | 68 |
| abstract_inverted_index.achieves | 66 |
| abstract_inverted_index.analysis | 53 |
| abstract_inverted_index.compared | 167 |
| abstract_inverted_index.dataset. | 107 |
| abstract_inverted_index.exhibits | 176 |
| abstract_inverted_index.impeding | 131 |
| abstract_inverted_index.indicate | 116 |
| abstract_inverted_index.learning | 6, 195 |
| abstract_inverted_index.maintain | 124 |
| abstract_inverted_index.material | 10, 199 |
| abstract_inverted_index.proposes | 23 |
| abstract_inverted_index.provides | 185 |
| abstract_inverted_index.science. | 20 |
| abstract_inverted_index.strength | 101 |
| abstract_inverted_index.stresses | 146, 161 |
| abstract_inverted_index.systems. | 209 |
| abstract_inverted_index.Enhancing | 1 |
| abstract_inverted_index.Moreover, | 166 |
| abstract_inverted_index.developed | 63 |
| abstract_inverted_index.different | 81 |
| abstract_inverted_index.establish | 31 |
| abstract_inverted_index.evolution | 37 |
| abstract_inverted_index.exceeding | 91 |
| abstract_inverted_index.improving | 190 |
| abstract_inverted_index.materials | 19, 48 |
| abstract_inverted_index.nonlinear | 44 |
| abstract_inverted_index.boundaries | 123, 149 |
| abstract_inverted_index.mechanical | 39 |
| abstract_inverted_index.mechanism. | 57 |
| abstract_inverted_index.plasticity | 171 |
| abstract_inverted_index.predicting | 9, 72, 198 |
| abstract_inverted_index.processes, | 84 |
| abstract_inverted_index.properties | 11, 40, 200 |
| abstract_inverted_index.boundaries, | 144 |
| abstract_inverted_index.deformation | 125 |
| abstract_inverted_index.dislocation | 132 |
| abstract_inverted_index.efficiency. | 182 |
| abstract_inverted_index.improvement | 179 |
| abstract_inverted_index.martensitic | 157 |
| abstract_inverted_index.multisystem | 45 |
| abstract_inverted_index.significant | 138 |
| abstract_inverted_index.substantial | 178 |
| abstract_inverted_index.traditional | 169 |
| abstract_inverted_index.compositions | 82 |
| abstract_inverted_index.coordination | 126 |
| abstract_inverted_index.deformation, | 120 |
| abstract_inverted_index.demonstrates | 60 |
| abstract_inverted_index.dual‐phase | 46, 77, 103 |
| abstract_inverted_index.relationship | 33 |
| abstract_inverted_index.representing | 94 |
| abstract_inverted_index.computational | 181 |
| abstract_inverted_index.concentration | 140 |
| abstract_inverted_index.convolutional | 26 |
| abstract_inverted_index.interpretable | 25 |
| abstract_inverted_index.non‐uniform | 42 |
| abstract_inverted_index.visualization | 110 |
| abstract_inverted_index.microstructural | 36 |
| abstract_inverted_index.microstructures | 79 |
| abstract_inverted_index.stress‐strain | 74 |
| abstract_inverted_index.interpretability | 3, 192 |
| abstract_inverted_index.elastic‐plastic | 56 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.92754433 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |