Empowering Precision Forecasting: Self-Supervised LSTM for Hourly Pressure and Temperature Prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.58940/2329-258x.2082
The most important parts of any flight are landing and takeoff, and an aircraft's takeoff configuration must balance the regulated takeoff weight, runway length, and weather conditions to ensure a safe departure and arrival. In addition to runway length, wind, temperature, pressure, and visibility determine the total allowed takeoff weight and the economic viability of any trip. Thus, any meteorological office involved in flight planning and operation at any airport must accurately assess these factors, known as takeoff data. This research paper suggests multivariate self-supervised LSTM-based models to accurately predict the temperature and pressure (MSLP) of the takeoff data. The suggested prediction algorithms are based on deep neural networks (LSTM), making them straightforward to design and resource-efficient. Based on this approach, a Nowcast of temperature and pressure for the next one to six hours could be generated using the time series multivariate dataset for airport temperature and pressure (representative station: Patna Airport) with input features including date and time, temperature, atmospheric pressure, humidity, dew point temperature, wind direction, wind speed, cloud amount, and present and past weather. Pearson correlation coefficients determined input features. The model's efficacy and accuracy are measured by comparing anticipated temperatures and pressure (MSLP) to observed temperatures and using several performance indicators. This technique aims to construct and implement robust and dynamic self-supervised LSTM models to automate takeoff data, which is essential for flight safety and efficiency.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.58940/2329-258x.2082
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413056622
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413056622Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.58940/2329-258x.2082Digital Object Identifier
- Title
-
Empowering Precision Forecasting: Self-Supervised LSTM for Hourly Pressure and Temperature PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Anand Shankar, Deepak Kumar Singh, Mantosh Kumar, Pankaj Kumar, P. Parth SarthiList of authors in order
- Landing page
-
https://doi.org/10.58940/2329-258x.2082Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.58940/2329-258x.2082Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Weather prediction, Machine learning, Environmental science, Meteorology, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413056622 |
|---|---|
| doi | https://doi.org/10.58940/2329-258x.2082 |
| ids.doi | https://doi.org/10.58940/2329-258x.2082 |
| ids.openalex | https://openalex.org/W4413056622 |
| fwci | 0.0 |
| type | article |
| title | Empowering Precision Forecasting: Self-Supervised LSTM for Hourly Pressure and Temperature Prediction |
| biblio.issue | 2 |
| biblio.volume | 34 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9668999910354614 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9642000198364258 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.48463138937950134 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4623846113681793 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2987469573 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4469861686229706 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q182868 |
| concepts[2].display_name | Weather prediction |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.43306270241737366 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3409513831138611 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C153294291 |
| concepts[5].level | 1 |
| concepts[5].score | 0.29710617661476135 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[5].display_name | Meteorology |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1128602921962738 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.48463138937950134 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4623846113681793 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/weather-prediction |
| keywords[2].score | 0.4469861686229706 |
| keywords[2].display_name | Weather prediction |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.43306270241737366 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.3409513831138611 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/meteorology |
| keywords[5].score | 0.29710617661476135 |
| keywords[5].display_name | Meteorology |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.1128602921962738 |
| keywords[6].display_name | Geography |
| language | en |
| locations[0].id | doi:10.58940/2329-258x.2082 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210169789 |
| locations[0].source.issn | 1065-1136, 2329-258X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1065-1136 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The Journal of Aviation/Aerospace Education and Research |
| locations[0].source.host_organization | https://openalex.org/P4310315880 |
| locations[0].source.host_organization_name | Embry–Riddle Aeronautical University |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315880 |
| locations[0].source.host_organization_lineage_names | Embry–Riddle Aeronautical University |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Aviation/Aerospace Education & Research |
| locations[0].landing_page_url | https://doi.org/10.58940/2329-258x.2082 |
| locations[1].id | pmh:oai:commons.erau.edu:jaaer-2082 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Aviation/Aerospace Education & Research |
| locations[1].landing_page_url | https://commons.erau.edu/jaaer/vol34/iss2/2 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5010104323 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8141-6400 |
| authorships[0].author.display_name | Anand Shankar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anand Shankar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032899711 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1265-7988 |
| authorships[1].author.display_name | Deepak Kumar Singh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Deepak K Singh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5111319867 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mantosh Kumar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mantosh Kumar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100747926 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5401-8482 |
| authorships[3].author.display_name | Pankaj Kumar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pankaj Kumar |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5046676290 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7254-1576 |
| authorships[4].author.display_name | P. Parth Sarthi |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Pradhan Parth Sarthi |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.58940/2329-258x.2082 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Empowering Precision Forecasting: Self-Supervised LSTM for Hourly Pressure and Temperature Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9668999910354614 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.58940/2329-258x.2082 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210169789 |
| best_oa_location.source.issn | 1065-1136, 2329-258X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1065-1136 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The Journal of Aviation/Aerospace Education and Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310315880 |
| best_oa_location.source.host_organization_name | Embry–Riddle Aeronautical University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315880 |
| best_oa_location.source.host_organization_lineage_names | Embry–Riddle Aeronautical University |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Aviation/Aerospace Education & Research |
| best_oa_location.landing_page_url | https://doi.org/10.58940/2329-258x.2082 |
| primary_location.id | doi:10.58940/2329-258x.2082 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210169789 |
| primary_location.source.issn | 1065-1136, 2329-258X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1065-1136 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The Journal of Aviation/Aerospace Education and Research |
| primary_location.source.host_organization | https://openalex.org/P4310315880 |
| primary_location.source.host_organization_name | Embry–Riddle Aeronautical University |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315880 |
| primary_location.source.host_organization_lineage_names | Embry–Riddle Aeronautical University |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Aviation/Aerospace Education & Research |
| primary_location.landing_page_url | https://doi.org/10.58940/2329-258x.2082 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 29, 121 |
| abstract_inverted_index.In | 34 |
| abstract_inverted_index.an | 12 |
| abstract_inverted_index.as | 76 |
| abstract_inverted_index.at | 67 |
| abstract_inverted_index.be | 135 |
| abstract_inverted_index.by | 190 |
| abstract_inverted_index.in | 62 |
| abstract_inverted_index.is | 223 |
| abstract_inverted_index.of | 4, 54, 95, 123 |
| abstract_inverted_index.on | 105, 118 |
| abstract_inverted_index.to | 27, 36, 87, 113, 131, 197, 208, 218 |
| abstract_inverted_index.The | 0, 99, 183 |
| abstract_inverted_index.and | 9, 11, 24, 32, 42, 50, 65, 92, 115, 125, 146, 157, 172, 174, 186, 194, 200, 210, 213, 228 |
| abstract_inverted_index.any | 5, 55, 58, 68 |
| abstract_inverted_index.are | 7, 103, 188 |
| abstract_inverted_index.dew | 163 |
| abstract_inverted_index.for | 127, 143, 225 |
| abstract_inverted_index.one | 130 |
| abstract_inverted_index.six | 132 |
| abstract_inverted_index.the | 18, 45, 51, 90, 96, 128, 138 |
| abstract_inverted_index.LSTM | 216 |
| abstract_inverted_index.This | 79, 205 |
| abstract_inverted_index.aims | 207 |
| abstract_inverted_index.date | 156 |
| abstract_inverted_index.deep | 106 |
| abstract_inverted_index.most | 1 |
| abstract_inverted_index.must | 16, 70 |
| abstract_inverted_index.next | 129 |
| abstract_inverted_index.past | 175 |
| abstract_inverted_index.safe | 30 |
| abstract_inverted_index.them | 111 |
| abstract_inverted_index.this | 119 |
| abstract_inverted_index.time | 139 |
| abstract_inverted_index.wind | 166, 168 |
| abstract_inverted_index.with | 152 |
| abstract_inverted_index.Based | 117 |
| abstract_inverted_index.Patna | 150 |
| abstract_inverted_index.Thus, | 57 |
| abstract_inverted_index.based | 104 |
| abstract_inverted_index.cloud | 170 |
| abstract_inverted_index.could | 134 |
| abstract_inverted_index.data, | 221 |
| abstract_inverted_index.data. | 78, 98 |
| abstract_inverted_index.hours | 133 |
| abstract_inverted_index.input | 153, 181 |
| abstract_inverted_index.known | 75 |
| abstract_inverted_index.paper | 81 |
| abstract_inverted_index.parts | 3 |
| abstract_inverted_index.point | 164 |
| abstract_inverted_index.these | 73 |
| abstract_inverted_index.time, | 158 |
| abstract_inverted_index.total | 46 |
| abstract_inverted_index.trip. | 56 |
| abstract_inverted_index.using | 137, 201 |
| abstract_inverted_index.which | 222 |
| abstract_inverted_index.wind, | 39 |
| abstract_inverted_index.(MSLP) | 94, 196 |
| abstract_inverted_index.assess | 72 |
| abstract_inverted_index.design | 114 |
| abstract_inverted_index.ensure | 28 |
| abstract_inverted_index.flight | 6, 63, 226 |
| abstract_inverted_index.making | 110 |
| abstract_inverted_index.models | 86, 217 |
| abstract_inverted_index.neural | 107 |
| abstract_inverted_index.office | 60 |
| abstract_inverted_index.robust | 212 |
| abstract_inverted_index.runway | 22, 37 |
| abstract_inverted_index.safety | 227 |
| abstract_inverted_index.series | 140 |
| abstract_inverted_index.speed, | 169 |
| abstract_inverted_index.weight | 49 |
| abstract_inverted_index.(LSTM), | 109 |
| abstract_inverted_index.Nowcast | 122 |
| abstract_inverted_index.Pearson | 177 |
| abstract_inverted_index.airport | 69, 144 |
| abstract_inverted_index.allowed | 47 |
| abstract_inverted_index.amount, | 171 |
| abstract_inverted_index.balance | 17 |
| abstract_inverted_index.dataset | 142 |
| abstract_inverted_index.dynamic | 214 |
| abstract_inverted_index.landing | 8 |
| abstract_inverted_index.length, | 23, 38 |
| abstract_inverted_index.model's | 184 |
| abstract_inverted_index.predict | 89 |
| abstract_inverted_index.present | 173 |
| abstract_inverted_index.several | 202 |
| abstract_inverted_index.takeoff | 14, 20, 48, 77, 97, 220 |
| abstract_inverted_index.weather | 25 |
| abstract_inverted_index.weight, | 21 |
| abstract_inverted_index.Airport) | 151 |
| abstract_inverted_index.accuracy | 187 |
| abstract_inverted_index.addition | 35 |
| abstract_inverted_index.arrival. | 33 |
| abstract_inverted_index.automate | 219 |
| abstract_inverted_index.economic | 52 |
| abstract_inverted_index.efficacy | 185 |
| abstract_inverted_index.factors, | 74 |
| abstract_inverted_index.features | 154 |
| abstract_inverted_index.involved | 61 |
| abstract_inverted_index.measured | 189 |
| abstract_inverted_index.networks | 108 |
| abstract_inverted_index.observed | 198 |
| abstract_inverted_index.planning | 64 |
| abstract_inverted_index.pressure | 93, 126, 147, 195 |
| abstract_inverted_index.research | 80 |
| abstract_inverted_index.station: | 149 |
| abstract_inverted_index.suggests | 82 |
| abstract_inverted_index.takeoff, | 10 |
| abstract_inverted_index.weather. | 176 |
| abstract_inverted_index.approach, | 120 |
| abstract_inverted_index.comparing | 191 |
| abstract_inverted_index.construct | 209 |
| abstract_inverted_index.departure | 31 |
| abstract_inverted_index.determine | 44 |
| abstract_inverted_index.essential | 224 |
| abstract_inverted_index.features. | 182 |
| abstract_inverted_index.generated | 136 |
| abstract_inverted_index.humidity, | 162 |
| abstract_inverted_index.implement | 211 |
| abstract_inverted_index.important | 2 |
| abstract_inverted_index.including | 155 |
| abstract_inverted_index.operation | 66 |
| abstract_inverted_index.pressure, | 41, 161 |
| abstract_inverted_index.regulated | 19 |
| abstract_inverted_index.suggested | 100 |
| abstract_inverted_index.technique | 206 |
| abstract_inverted_index.viability | 53 |
| abstract_inverted_index.LSTM-based | 85 |
| abstract_inverted_index.accurately | 71, 88 |
| abstract_inverted_index.aircraft's | 13 |
| abstract_inverted_index.algorithms | 102 |
| abstract_inverted_index.conditions | 26 |
| abstract_inverted_index.determined | 180 |
| abstract_inverted_index.direction, | 167 |
| abstract_inverted_index.prediction | 101 |
| abstract_inverted_index.visibility | 43 |
| abstract_inverted_index.anticipated | 192 |
| abstract_inverted_index.atmospheric | 160 |
| abstract_inverted_index.correlation | 178 |
| abstract_inverted_index.efficiency. | 229 |
| abstract_inverted_index.indicators. | 204 |
| abstract_inverted_index.performance | 203 |
| abstract_inverted_index.temperature | 91, 124, 145 |
| abstract_inverted_index.coefficients | 179 |
| abstract_inverted_index.multivariate | 83, 141 |
| abstract_inverted_index.temperature, | 40, 159, 165 |
| abstract_inverted_index.temperatures | 193, 199 |
| abstract_inverted_index.configuration | 15 |
| abstract_inverted_index.meteorological | 59 |
| abstract_inverted_index.(representative | 148 |
| abstract_inverted_index.self-supervised | 84, 215 |
| abstract_inverted_index.straightforward | 112 |
| abstract_inverted_index.resource-efficient. | 116 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.38612008 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |