Emulator-based Bayesian calibration of a subglacial drainage model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.31223/x5gq68
Subglacial drainage models, often motivated by the relationship between hydrology and ice flow, sensitively depend on numerous unconstrained parameters. We explore using borehole water-pressure timeseries to calibrate the uncertain parameters of a popular subglacial drainage model, taking a Bayesian perspective to quantify the uncertainty in parameter estimates and in the calibrated model predictions. To reduce the computation time associated with Markov Chain Monte Carlo sampling, we construct a fast Gaussian process emulator to stand in for the subglacial drainage model. We first carry out a calibration experiment using synthetic observations consisting of model simulations with hidden parameter values as a demonstration of the method. Using real borehole water pressures measured in western Greenland, we find meaningful constraints on four of the eight model parameters and a factor-of-three reduction in uncertainty of the calibrated model predictions. These experiments illustrate Gaussian process-based Bayesian inference as a useful tool for calibration and uncertainty quantification of complex glaciological models using field data. However, significant differences between the calibrated model and the borehole data suggest that structural limitations of the model, rather than poorly constrained parameters or computational cost, remain the most important constraint on subglacial drainage modelling.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31223/x5gq68
- OA Status
- gold
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405774155
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405774155Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31223/x5gq68Digital Object Identifier
- Title
-
Emulator-based Bayesian calibration of a subglacial drainage modelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-25Full publication date if available
- Authors
-
Tim Hill, Gwenn E. Flowers, Derek Bingham, Matthew J. HoffmanList of authors in order
- Landing page
-
https://doi.org/10.31223/x5gq68Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.31223/x5gq68Direct OA link when available
- Concepts
-
Calibration, Bayesian probability, Drainage, Computer science, Bayesian inference, Geology, Environmental science, Artificial intelligence, Statistics, Mathematics, Ecology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405774155 |
|---|---|
| doi | https://doi.org/10.31223/x5gq68 |
| ids.doi | https://doi.org/10.31223/x5gq68 |
| ids.openalex | https://openalex.org/W4405774155 |
| fwci | 1.40210822 |
| type | preprint |
| title | Emulator-based Bayesian calibration of a subglacial drainage model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10535 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9940000176429749 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2308 |
| topics[0].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[0].display_name | Landslides and related hazards |
| topics[1].id | https://openalex.org/T10644 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9907000064849854 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Cryospheric studies and observations |
| topics[2].id | https://openalex.org/T10716 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9793999791145325 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Soil and Unsaturated Flow |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165838908 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7359893918037415 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q736777 |
| concepts[0].display_name | Calibration |
| concepts[1].id | https://openalex.org/C107673813 |
| concepts[1].level | 2 |
| concepts[1].score | 0.682091474533081 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[1].display_name | Bayesian probability |
| concepts[2].id | https://openalex.org/C67592535 |
| concepts[2].level | 2 |
| concepts[2].score | 0.666823148727417 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7481320 |
| concepts[2].display_name | Drainage |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48506060242652893 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C160234255 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4703165590763092 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[4].display_name | Bayesian inference |
| concepts[5].id | https://openalex.org/C127313418 |
| concepts[5].level | 0 |
| concepts[5].score | 0.45401349663734436 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[5].display_name | Geology |
| concepts[6].id | https://openalex.org/C39432304 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3578738570213318 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[6].display_name | Environmental science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.24832800030708313 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2031092345714569 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15578505396842957 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C18903297 |
| concepts[10].level | 1 |
| concepts[10].score | 0.06661361455917358 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[10].display_name | Ecology |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/calibration |
| keywords[0].score | 0.7359893918037415 |
| keywords[0].display_name | Calibration |
| keywords[1].id | https://openalex.org/keywords/bayesian-probability |
| keywords[1].score | 0.682091474533081 |
| keywords[1].display_name | Bayesian probability |
| keywords[2].id | https://openalex.org/keywords/drainage |
| keywords[2].score | 0.666823148727417 |
| keywords[2].display_name | Drainage |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.48506060242652893 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/bayesian-inference |
| keywords[4].score | 0.4703165590763092 |
| keywords[4].display_name | Bayesian inference |
| keywords[5].id | https://openalex.org/keywords/geology |
| keywords[5].score | 0.45401349663734436 |
| keywords[5].display_name | Geology |
| keywords[6].id | https://openalex.org/keywords/environmental-science |
| keywords[6].score | 0.3578738570213318 |
| keywords[6].display_name | Environmental science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.24832800030708313 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.2031092345714569 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.15578505396842957 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/ecology |
| keywords[10].score | 0.06661361455917358 |
| keywords[10].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.31223/x5gq68 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31223/x5gq68 |
| locations[1].id | pmh:doi:10.31223/X5GQ68 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Other |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5076931029 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3538-7060 |
| authorships[0].author.display_name | Tim Hill |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tim Hill |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5045013234 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3574-9324 |
| authorships[1].author.display_name | Gwenn E. Flowers |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gwenn Flowers |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5060689409 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5628-7256 |
| authorships[2].author.display_name | Derek Bingham |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Derek Bingham |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5079326539 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5076-0540 |
| authorships[3].author.display_name | Matthew J. Hoffman |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Matthew Hoffman |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.31223/x5gq68 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Emulator-based Bayesian calibration of a subglacial drainage model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10535 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9940000176429749 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2308 |
| primary_topic.subfield.display_name | Management, Monitoring, Policy and Law |
| primary_topic.display_name | Landslides and related hazards |
| related_works | https://openalex.org/W3171196943, https://openalex.org/W2407375987, https://openalex.org/W3049691116, https://openalex.org/W2505726097, https://openalex.org/W2950975704, https://openalex.org/W2010643158, https://openalex.org/W2106867672, https://openalex.org/W4310268968, https://openalex.org/W4297815943, https://openalex.org/W2053745677 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.31223/x5gq68 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31223/x5gq68 |
| primary_location.id | doi:10.31223/x5gq68 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31223/x5gq68 |
| publication_date | 2024-12-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 31, 37, 67, 84, 99, 125, 143 |
| abstract_inverted_index.To | 53 |
| abstract_inverted_index.We | 19, 80 |
| abstract_inverted_index.as | 98, 142 |
| abstract_inverted_index.by | 5 |
| abstract_inverted_index.in | 44, 48, 74, 110, 128 |
| abstract_inverted_index.of | 30, 91, 101, 119, 130, 151, 173 |
| abstract_inverted_index.on | 15, 117, 189 |
| abstract_inverted_index.or | 181 |
| abstract_inverted_index.to | 25, 40, 72 |
| abstract_inverted_index.we | 65, 113 |
| abstract_inverted_index.and | 10, 47, 124, 148, 165 |
| abstract_inverted_index.for | 75, 146 |
| abstract_inverted_index.ice | 11 |
| abstract_inverted_index.out | 83 |
| abstract_inverted_index.the | 6, 27, 42, 49, 55, 76, 102, 120, 131, 162, 166, 174, 185 |
| abstract_inverted_index.data | 168 |
| abstract_inverted_index.fast | 68 |
| abstract_inverted_index.find | 114 |
| abstract_inverted_index.four | 118 |
| abstract_inverted_index.most | 186 |
| abstract_inverted_index.real | 105 |
| abstract_inverted_index.than | 177 |
| abstract_inverted_index.that | 170 |
| abstract_inverted_index.time | 57 |
| abstract_inverted_index.tool | 145 |
| abstract_inverted_index.with | 59, 94 |
| abstract_inverted_index.Carlo | 63 |
| abstract_inverted_index.Chain | 61 |
| abstract_inverted_index.Monte | 62 |
| abstract_inverted_index.These | 135 |
| abstract_inverted_index.Using | 104 |
| abstract_inverted_index.carry | 82 |
| abstract_inverted_index.cost, | 183 |
| abstract_inverted_index.data. | 157 |
| abstract_inverted_index.eight | 121 |
| abstract_inverted_index.field | 156 |
| abstract_inverted_index.first | 81 |
| abstract_inverted_index.flow, | 12 |
| abstract_inverted_index.model | 51, 92, 122, 133, 164 |
| abstract_inverted_index.often | 3 |
| abstract_inverted_index.stand | 73 |
| abstract_inverted_index.using | 21, 87, 155 |
| abstract_inverted_index.water | 107 |
| abstract_inverted_index.Markov | 60 |
| abstract_inverted_index.depend | 14 |
| abstract_inverted_index.hidden | 95 |
| abstract_inverted_index.model, | 35, 175 |
| abstract_inverted_index.model. | 79 |
| abstract_inverted_index.models | 154 |
| abstract_inverted_index.poorly | 178 |
| abstract_inverted_index.rather | 176 |
| abstract_inverted_index.reduce | 54 |
| abstract_inverted_index.remain | 184 |
| abstract_inverted_index.taking | 36 |
| abstract_inverted_index.useful | 144 |
| abstract_inverted_index.values | 97 |
| abstract_inverted_index.between | 8, 161 |
| abstract_inverted_index.complex | 152 |
| abstract_inverted_index.explore | 20 |
| abstract_inverted_index.method. | 103 |
| abstract_inverted_index.models, | 2 |
| abstract_inverted_index.popular | 32 |
| abstract_inverted_index.process | 70 |
| abstract_inverted_index.suggest | 169 |
| abstract_inverted_index.western | 111 |
| abstract_inverted_index.Bayesian | 38, 140 |
| abstract_inverted_index.Gaussian | 69, 138 |
| abstract_inverted_index.However, | 158 |
| abstract_inverted_index.borehole | 22, 106, 167 |
| abstract_inverted_index.drainage | 1, 34, 78, 191 |
| abstract_inverted_index.emulator | 71 |
| abstract_inverted_index.measured | 109 |
| abstract_inverted_index.numerous | 16 |
| abstract_inverted_index.quantify | 41 |
| abstract_inverted_index.calibrate | 26 |
| abstract_inverted_index.construct | 66 |
| abstract_inverted_index.estimates | 46 |
| abstract_inverted_index.hydrology | 9 |
| abstract_inverted_index.important | 187 |
| abstract_inverted_index.inference | 141 |
| abstract_inverted_index.motivated | 4 |
| abstract_inverted_index.parameter | 45, 96 |
| abstract_inverted_index.pressures | 108 |
| abstract_inverted_index.reduction | 127 |
| abstract_inverted_index.sampling, | 64 |
| abstract_inverted_index.synthetic | 88 |
| abstract_inverted_index.uncertain | 28 |
| abstract_inverted_index.Greenland, | 112 |
| abstract_inverted_index.Subglacial | 0 |
| abstract_inverted_index.associated | 58 |
| abstract_inverted_index.calibrated | 50, 132, 163 |
| abstract_inverted_index.consisting | 90 |
| abstract_inverted_index.constraint | 188 |
| abstract_inverted_index.experiment | 86 |
| abstract_inverted_index.illustrate | 137 |
| abstract_inverted_index.meaningful | 115 |
| abstract_inverted_index.modelling. | 192 |
| abstract_inverted_index.parameters | 29, 123, 180 |
| abstract_inverted_index.structural | 171 |
| abstract_inverted_index.subglacial | 33, 77, 190 |
| abstract_inverted_index.timeseries | 24 |
| abstract_inverted_index.calibration | 85, 147 |
| abstract_inverted_index.computation | 56 |
| abstract_inverted_index.constrained | 179 |
| abstract_inverted_index.constraints | 116 |
| abstract_inverted_index.differences | 160 |
| abstract_inverted_index.experiments | 136 |
| abstract_inverted_index.limitations | 172 |
| abstract_inverted_index.parameters. | 18 |
| abstract_inverted_index.perspective | 39 |
| abstract_inverted_index.sensitively | 13 |
| abstract_inverted_index.significant | 159 |
| abstract_inverted_index.simulations | 93 |
| abstract_inverted_index.uncertainty | 43, 129, 149 |
| abstract_inverted_index.observations | 89 |
| abstract_inverted_index.predictions. | 52, 134 |
| abstract_inverted_index.relationship | 7 |
| abstract_inverted_index.computational | 182 |
| abstract_inverted_index.demonstration | 100 |
| abstract_inverted_index.glaciological | 153 |
| abstract_inverted_index.process-based | 139 |
| abstract_inverted_index.unconstrained | 17 |
| abstract_inverted_index.quantification | 150 |
| abstract_inverted_index.water-pressure | 23 |
| abstract_inverted_index.factor-of-three | 126 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.83146791 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |