Enabling Call Path Querying in Hatchet to Identify Performance Bottlenecks in Scientific Applications Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/escience55777.2022.00039
As computational science applications benefit from larger-scale, more heterogeneous high performance computing (HPC) systems, the process of studying their performance becomes increasingly complex. The performance data analysis library Hatchet provides some insights into this complexity, but is currently limited in its analysis capabilities. Missing capabilities include the handling of relational caller-callee data captured by HPC profilers. To address this shortcoming, we augment Hatchet with a Call Path Query Language that leverages relational data in the performance analysis of scientific applications. Specifically, our Query Language enables data reduction using call path pattern matching. We demonstrate the effectiveness of our Query Language in identifying performance bottlenecks and enhancing Hatchet’s analysis capabilities through three case studies. In the first case study, we compare the performance of sequential and multi-threaded versions of the graph alignment application Fido. In doing so, we identify the existence of large memory inefficiencies in both versions. In the second case study, we examine the performance of MPI calls in the linear algebra mini-application AMG2013 when using MVAPICH and Spectrum-MPI. In doing so, we identify hidden performance losses in specific MPI functions. In the third case study, we illustrate the use of our Query Language in Hatchet's interactive visualization. In doing so, we show that our Query Language enables a simple and intuitive way to massively reduce profiling data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/escience55777.2022.00039
- OA Status
- green
- Cited By
- 4
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4307080439
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4307080439Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/escience55777.2022.00039Digital Object Identifier
- Title
-
Enabling Call Path Querying in Hatchet to Identify Performance Bottlenecks in Scientific ApplicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-01Full publication date if available
- Authors
-
Ian Lumsden, Jakob Luettgau, Vanessa Lama, Connor Scully-Allison, Stephanie Brink, Katherine E. Isaacs, Olga Pearce, Michela TauferList of authors in order
- Landing page
-
https://doi.org/10.1109/escience55777.2022.00039Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://zenodo.org/record/7158671Direct OA link when available
- Concepts
-
Computer science, Query language, Profiling (computer programming), Visualization, Performance tuning, Path (computing), Graph, Information retrieval, Theoretical computer science, Programming language, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4307080439 |
|---|---|
| doi | https://doi.org/10.1109/escience55777.2022.00039 |
| ids.doi | https://doi.org/10.1109/escience55777.2022.00039 |
| ids.openalex | https://openalex.org/W4307080439 |
| fwci | 0.85696698 |
| type | article |
| title | Enabling Call Path Querying in Hatchet to Identify Performance Bottlenecks in Scientific Applications |
| awards[0].id | https://openalex.org/G7997526676 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | 1841758,1900888,2138811 |
| awards[0].funder_display_name | National Science Foundation |
| awards[1].id | https://openalex.org/G5816449448 |
| awards[1].funder_id | https://openalex.org/F4320306084 |
| awards[1].display_name | |
| awards[1].funder_award_id | DE-AC52-07NA27344 |
| awards[1].funder_display_name | U.S. Department of Energy |
| awards[2].id | https://openalex.org/G8348823206 |
| awards[2].funder_id | https://openalex.org/F4320338286 |
| awards[2].display_name | |
| awards[2].funder_award_id | LLNL-CONF-835691 |
| awards[2].funder_display_name | Lawrence Livermore National Laboratory |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 266 |
| biblio.first_page | 256 |
| topics[0].id | https://openalex.org/T12127 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Software System Performance and Reliability |
| topics[1].id | https://openalex.org/T10054 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1708 |
| topics[1].subfield.display_name | Hardware and Architecture |
| topics[1].display_name | Parallel Computing and Optimization Techniques |
| topics[2].id | https://openalex.org/T10101 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9947999715805054 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Cloud Computing and Resource Management |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320306084 |
| funders[1].ror | https://ror.org/01bj3aw27 |
| funders[1].display_name | U.S. Department of Energy |
| funders[2].id | https://openalex.org/F4320338286 |
| funders[2].ror | https://ror.org/041nk4h53 |
| funders[2].display_name | Lawrence Livermore National Laboratory |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.9126254320144653 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C192028432 |
| concepts[1].level | 2 |
| concepts[1].score | 0.563048779964447 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q845739 |
| concepts[1].display_name | Query language |
| concepts[2].id | https://openalex.org/C187191949 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4563709795475006 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1138496 |
| concepts[2].display_name | Profiling (computer programming) |
| concepts[3].id | https://openalex.org/C36464697 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4492623805999756 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[3].display_name | Visualization |
| concepts[4].id | https://openalex.org/C2777138346 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43755218386650085 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1714153 |
| concepts[4].display_name | Performance tuning |
| concepts[5].id | https://openalex.org/C2777735758 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4342445731163025 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[5].display_name | Path (computing) |
| concepts[6].id | https://openalex.org/C132525143 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42089757323265076 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[6].display_name | Graph |
| concepts[7].id | https://openalex.org/C23123220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3580169677734375 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[7].display_name | Information retrieval |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33924975991249084 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33024317026138306 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3180096745491028 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.9126254320144653 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/query-language |
| keywords[1].score | 0.563048779964447 |
| keywords[1].display_name | Query language |
| keywords[2].id | https://openalex.org/keywords/profiling |
| keywords[2].score | 0.4563709795475006 |
| keywords[2].display_name | Profiling (computer programming) |
| keywords[3].id | https://openalex.org/keywords/visualization |
| keywords[3].score | 0.4492623805999756 |
| keywords[3].display_name | Visualization |
| keywords[4].id | https://openalex.org/keywords/performance-tuning |
| keywords[4].score | 0.43755218386650085 |
| keywords[4].display_name | Performance tuning |
| keywords[5].id | https://openalex.org/keywords/path |
| keywords[5].score | 0.4342445731163025 |
| keywords[5].display_name | Path (computing) |
| keywords[6].id | https://openalex.org/keywords/graph |
| keywords[6].score | 0.42089757323265076 |
| keywords[6].display_name | Graph |
| keywords[7].id | https://openalex.org/keywords/information-retrieval |
| keywords[7].score | 0.3580169677734375 |
| keywords[7].display_name | Information retrieval |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.33924975991249084 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/programming-language |
| keywords[9].score | 0.33024317026138306 |
| keywords[9].display_name | Programming language |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3180096745491028 |
| keywords[10].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1109/escience55777.2022.00039 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2022 IEEE 18th International Conference on e-Science (e-Science) |
| locations[0].landing_page_url | https://doi.org/10.1109/escience55777.2022.00039 |
| locations[1].id | pmh:oai:zenodo.org:7158671 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/lecture |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://zenodo.org/record/7158671 |
| locations[2].id | doi:10.5281/zenodo.7158671 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400562 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[2].source.host_organization | https://openalex.org/I67311998 |
| locations[2].source.host_organization_name | European Organization for Nuclear Research |
| locations[2].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article-journal |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.5281/zenodo.7158671 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5088217764 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0009-5487 |
| authorships[0].author.display_name | Ian Lumsden |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I75027704 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA |
| authorships[0].institutions[0].id | https://openalex.org/I75027704 |
| authorships[0].institutions[0].ror | https://ror.org/020f3ap87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I75027704 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Tennessee at Knoxville |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ian Lumsden |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA |
| authorships[1].author.id | https://openalex.org/A5088117464 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3672-206X |
| authorships[1].author.display_name | Jakob Luettgau |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I75027704 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA |
| authorships[1].institutions[0].id | https://openalex.org/I75027704 |
| authorships[1].institutions[0].ror | https://ror.org/020f3ap87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I75027704 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Tennessee at Knoxville |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jakob Luettgau |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA |
| authorships[2].author.id | https://openalex.org/A5017400835 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-9738-2860 |
| authorships[2].author.display_name | Vanessa Lama |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I75027704 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA |
| authorships[2].institutions[0].id | https://openalex.org/I75027704 |
| authorships[2].institutions[0].ror | https://ror.org/020f3ap87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I75027704 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Tennessee at Knoxville |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vanessa Lama |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA |
| authorships[3].author.id | https://openalex.org/A5062963076 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5990-6179 |
| authorships[3].author.display_name | Connor Scully-Allison |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I223532165 |
| authorships[3].affiliations[0].raw_affiliation_string | SCI Institute, School of Computing, University of Utah, UT, USA |
| authorships[3].institutions[0].id | https://openalex.org/I223532165 |
| authorships[3].institutions[0].ror | https://ror.org/03r0ha626 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I223532165 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Utah |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Connor Scully-Allison |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | SCI Institute, School of Computing, University of Utah, UT, USA |
| authorships[4].author.id | https://openalex.org/A5010860138 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1458-8453 |
| authorships[4].author.display_name | Stephanie Brink |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1282311441 |
| authorships[4].affiliations[0].raw_affiliation_string | Lawrence Livermore National Laboratory, Livermore, CA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1282311441 |
| authorships[4].institutions[0].ror | https://ror.org/041nk4h53 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1282311441, https://openalex.org/I1330989302, https://openalex.org/I198811213, https://openalex.org/I4210138311 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Lawrence Livermore National Laboratory |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Stephanie Brink |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Lawrence Livermore National Laboratory, Livermore, CA, USA |
| authorships[5].author.id | https://openalex.org/A5009771339 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9947-928X |
| authorships[5].author.display_name | Katherine E. Isaacs |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I223532165 |
| authorships[5].affiliations[0].raw_affiliation_string | SCI Institute, School of Computing, University of Utah, UT, USA |
| authorships[5].institutions[0].id | https://openalex.org/I223532165 |
| authorships[5].institutions[0].ror | https://ror.org/03r0ha626 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I223532165 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Utah |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Katherine E. Isaacs |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | SCI Institute, School of Computing, University of Utah, UT, USA |
| authorships[6].author.id | https://openalex.org/A5012779678 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1904-9627 |
| authorships[6].author.display_name | Olga Pearce |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1282311441 |
| authorships[6].affiliations[0].raw_affiliation_string | Lawrence Livermore National Laboratory, Livermore, CA, USA |
| authorships[6].institutions[0].id | https://openalex.org/I1282311441 |
| authorships[6].institutions[0].ror | https://ror.org/041nk4h53 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I1282311441, https://openalex.org/I1330989302, https://openalex.org/I198811213, https://openalex.org/I4210138311 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Lawrence Livermore National Laboratory |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Olga Pearce |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Lawrence Livermore National Laboratory, Livermore, CA, USA |
| authorships[7].author.id | https://openalex.org/A5078387820 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0031-6377 |
| authorships[7].author.display_name | Michela Taufer |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I75027704 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA |
| authorships[7].institutions[0].id | https://openalex.org/I75027704 |
| authorships[7].institutions[0].ror | https://ror.org/020f3ap87 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I75027704 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Tennessee at Knoxville |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Michela Taufer |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://zenodo.org/record/7158671 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enabling Call Path Querying in Hatchet to Identify Performance Bottlenecks in Scientific Applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12127 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Software System Performance and Reliability |
| related_works | https://openalex.org/W2068608913, https://openalex.org/W3124914020, https://openalex.org/W2141033859, https://openalex.org/W2161444195, https://openalex.org/W2156434174, https://openalex.org/W2071701083, https://openalex.org/W2383687187, https://openalex.org/W2081517010, https://openalex.org/W2149446117, https://openalex.org/W4382052962 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:zenodo.org:7158671 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/lecture |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://zenodo.org/record/7158671 |
| primary_location.id | doi:10.1109/escience55777.2022.00039 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2022 IEEE 18th International Conference on e-Science (e-Science) |
| primary_location.landing_page_url | https://doi.org/10.1109/escience55777.2022.00039 |
| publication_date | 2022-10-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2342249984, https://openalex.org/W2799059383, https://openalex.org/W2126359798, https://openalex.org/W6636964530, https://openalex.org/W2130237248, https://openalex.org/W2996807164, https://openalex.org/W1893177189, https://openalex.org/W2136434791, https://openalex.org/W2114507260, https://openalex.org/W1545880915, https://openalex.org/W3160324896, https://openalex.org/W2101778912, https://openalex.org/W2987414305, https://openalex.org/W3203424682, https://openalex.org/W4246569695, https://openalex.org/W3126784725, https://openalex.org/W2011301426, https://openalex.org/W2901297776, https://openalex.org/W6755700613, https://openalex.org/W2898982214, https://openalex.org/W1656664476, https://openalex.org/W2340816002, https://openalex.org/W3100284210, https://openalex.org/W4280569664, https://openalex.org/W4320855715 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 64, 209 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.In | 113, 133, 147, 170, 182, 199 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.We | 92 |
| abstract_inverted_index.by | 53 |
| abstract_inverted_index.in | 39, 73, 100, 144, 159, 178, 195 |
| abstract_inverted_index.is | 36 |
| abstract_inverted_index.of | 16, 48, 77, 96, 122, 127, 140, 156, 191 |
| abstract_inverted_index.to | 214 |
| abstract_inverted_index.we | 60, 118, 136, 152, 173, 187, 202 |
| abstract_inverted_index.HPC | 54 |
| abstract_inverted_index.MPI | 157, 180 |
| abstract_inverted_index.The | 23 |
| abstract_inverted_index.and | 104, 124, 168, 211 |
| abstract_inverted_index.but | 35 |
| abstract_inverted_index.its | 40 |
| abstract_inverted_index.our | 81, 97, 192, 205 |
| abstract_inverted_index.so, | 135, 172, 201 |
| abstract_inverted_index.the | 14, 46, 74, 94, 114, 120, 128, 138, 148, 154, 160, 183, 189 |
| abstract_inverted_index.use | 190 |
| abstract_inverted_index.way | 213 |
| abstract_inverted_index.Call | 65 |
| abstract_inverted_index.Path | 66 |
| abstract_inverted_index.both | 145 |
| abstract_inverted_index.call | 88 |
| abstract_inverted_index.case | 111, 116, 150, 185 |
| abstract_inverted_index.data | 25, 51, 72, 85 |
| abstract_inverted_index.from | 5 |
| abstract_inverted_index.high | 9 |
| abstract_inverted_index.into | 32 |
| abstract_inverted_index.more | 7 |
| abstract_inverted_index.path | 89 |
| abstract_inverted_index.show | 203 |
| abstract_inverted_index.some | 30 |
| abstract_inverted_index.that | 69, 204 |
| abstract_inverted_index.this | 33, 58 |
| abstract_inverted_index.when | 165 |
| abstract_inverted_index.with | 63 |
| abstract_inverted_index.(HPC) | 12 |
| abstract_inverted_index.Fido. | 132 |
| abstract_inverted_index.Query | 67, 82, 98, 193, 206 |
| abstract_inverted_index.calls | 158 |
| abstract_inverted_index.data. | 218 |
| abstract_inverted_index.doing | 134, 171, 200 |
| abstract_inverted_index.first | 115 |
| abstract_inverted_index.graph | 129 |
| abstract_inverted_index.large | 141 |
| abstract_inverted_index.their | 18 |
| abstract_inverted_index.third | 184 |
| abstract_inverted_index.three | 110 |
| abstract_inverted_index.using | 87, 166 |
| abstract_inverted_index.hidden | 175 |
| abstract_inverted_index.linear | 161 |
| abstract_inverted_index.losses | 177 |
| abstract_inverted_index.memory | 142 |
| abstract_inverted_index.reduce | 216 |
| abstract_inverted_index.second | 149 |
| abstract_inverted_index.simple | 210 |
| abstract_inverted_index.study, | 117, 151, 186 |
| abstract_inverted_index.AMG2013 | 164 |
| abstract_inverted_index.Hatchet | 28, 62 |
| abstract_inverted_index.MVAPICH | 167 |
| abstract_inverted_index.Missing | 43 |
| abstract_inverted_index.address | 57 |
| abstract_inverted_index.algebra | 162 |
| abstract_inverted_index.augment | 61 |
| abstract_inverted_index.becomes | 20 |
| abstract_inverted_index.benefit | 4 |
| abstract_inverted_index.compare | 119 |
| abstract_inverted_index.enables | 84, 208 |
| abstract_inverted_index.examine | 153 |
| abstract_inverted_index.include | 45 |
| abstract_inverted_index.library | 27 |
| abstract_inverted_index.limited | 38 |
| abstract_inverted_index.pattern | 90 |
| abstract_inverted_index.process | 15 |
| abstract_inverted_index.science | 2 |
| abstract_inverted_index.through | 109 |
| abstract_inverted_index.Language | 68, 83, 99, 194, 207 |
| abstract_inverted_index.analysis | 26, 41, 76, 107 |
| abstract_inverted_index.captured | 52 |
| abstract_inverted_index.complex. | 22 |
| abstract_inverted_index.handling | 47 |
| abstract_inverted_index.identify | 137, 174 |
| abstract_inverted_index.insights | 31 |
| abstract_inverted_index.provides | 29 |
| abstract_inverted_index.specific | 179 |
| abstract_inverted_index.studies. | 112 |
| abstract_inverted_index.studying | 17 |
| abstract_inverted_index.systems, | 13 |
| abstract_inverted_index.versions | 126 |
| abstract_inverted_index.Hatchet's | 196 |
| abstract_inverted_index.alignment | 130 |
| abstract_inverted_index.computing | 11 |
| abstract_inverted_index.currently | 37 |
| abstract_inverted_index.enhancing | 105 |
| abstract_inverted_index.existence | 139 |
| abstract_inverted_index.intuitive | 212 |
| abstract_inverted_index.leverages | 70 |
| abstract_inverted_index.massively | 215 |
| abstract_inverted_index.matching. | 91 |
| abstract_inverted_index.profiling | 217 |
| abstract_inverted_index.reduction | 86 |
| abstract_inverted_index.versions. | 146 |
| abstract_inverted_index.functions. | 181 |
| abstract_inverted_index.illustrate | 188 |
| abstract_inverted_index.profilers. | 55 |
| abstract_inverted_index.relational | 49, 71 |
| abstract_inverted_index.scientific | 78 |
| abstract_inverted_index.sequential | 123 |
| abstract_inverted_index.Hatchet’s | 106 |
| abstract_inverted_index.application | 131 |
| abstract_inverted_index.bottlenecks | 103 |
| abstract_inverted_index.complexity, | 34 |
| abstract_inverted_index.demonstrate | 93 |
| abstract_inverted_index.identifying | 101 |
| abstract_inverted_index.interactive | 197 |
| abstract_inverted_index.performance | 10, 19, 24, 75, 102, 121, 155, 176 |
| abstract_inverted_index.applications | 3 |
| abstract_inverted_index.capabilities | 44, 108 |
| abstract_inverted_index.increasingly | 21 |
| abstract_inverted_index.shortcoming, | 59 |
| abstract_inverted_index.Specifically, | 80 |
| abstract_inverted_index.Spectrum-MPI. | 169 |
| abstract_inverted_index.applications. | 79 |
| abstract_inverted_index.caller-callee | 50 |
| abstract_inverted_index.capabilities. | 42 |
| abstract_inverted_index.computational | 1 |
| abstract_inverted_index.effectiveness | 95 |
| abstract_inverted_index.heterogeneous | 8 |
| abstract_inverted_index.larger-scale, | 6 |
| abstract_inverted_index.inefficiencies | 143 |
| abstract_inverted_index.multi-threaded | 125 |
| abstract_inverted_index.visualization. | 198 |
| abstract_inverted_index.mini-application | 163 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.6939807 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |