Enabling Regenerative Agriculture Using Remote Sensing and Machine Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/land12061142
The emergence of cloud computing, big data analytics, and machine learning has catalysed the use of remote sensing technologies to enable more timely management of sustainability indicators, given the uncertainty of future climate conditions. Here, we examine the potential of “regenerative agriculture”, as an adaptive grazing management strategy to minimise bare ground exposure while improving pasture productivity. High-intensity sheep grazing treatments were conducted in small fields (less than 1 ha) for short durations (typically less than 1 day). Paddocks were subsequently spelled to allow pasture biomass recovery (treatments comprising 3, 6, 9, 12, and 15 months), with each compared with controls characterised by lighter stocking rates for longer periods (2000 DSE/ha). Pastures were composed of wallaby grass (Austrodanthonia species), kangaroo grass (Themeda triandra), Phalaris (Phalaris aquatica), and cocksfoot (Dactylis glomerata), and were destructively sampled to estimate total standing dry matter (TSDM), standing green biomass, standing dry biomass and trampled biomass. We invoked a machine learning model forced with Sentinel-2 imagery to quantify TSDM, standing green and dry biomass. Faced with La Nina conditions, regenerative grazing did not significantly impact pasture productivity, with all treatments showing similar TSDM, green biomass and recovery. However, regenerative treatments significantly impacted litterfall and trampled material, with high-intensity grazing treatments trampling more biomass, increasing litter, enhancing surface organic matter and decomposition rates thereof. Pasture digestibility and sward uniformity were greatest for treatments with minimal spelling (3 months), whereas both standing senescent and trampled material were greater for the 15-month spelling treatment. TSDM prognostics from machine learning were lower than measured TSDM, although predictions from the machine learning approach closely matched observed spatiotemporal variability within and across treatments. The root mean square error between the measured and modelled TSDM was 903 kg DM/ha, which was less than the variability measured in the field. We conclude that regenerative grazing with short recovery periods (3–6 months) was more conducive to increasing pasture production under high rainfall conditions, and we speculate that – in this environment - high-intensity grazing with 3-month spelling is likely to improve soil organic carbon through increased litterfall and trampling. Our study paves the way for using machine learning with satellite imagery to quantify pasture biomass at small scales, enabling the management of pastures within small fields from afar.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/land12061142
- https://www.mdpi.com/2073-445X/12/6/1142/pdf?version=1685925975
- OA Status
- gold
- Cited By
- 17
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4378717363
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4378717363Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/land12061142Digital Object Identifier
- Title
-
Enabling Regenerative Agriculture Using Remote Sensing and Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-29Full publication date if available
- Authors
-
Michael Gbenga Ogungbuyi, Juan Pablo Guerschman, Andrew M. Fischer, Richard A. Crabbe, CL Mohammed, Peter Scarth, P.K. Tickle, Jason M. Whitehead, Matthew Tom HarrisonList of authors in order
- Landing page
-
https://doi.org/10.3390/land12061142Publisher landing page
- PDF URL
-
https://www.mdpi.com/2073-445X/12/6/1142/pdf?version=1685925975Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2073-445X/12/6/1142/pdf?version=1685925975Direct OA link when available
- Concepts
-
Grazing, Biomass (ecology), Pasture, Agronomy, Environmental science, Agroforestry, Tiller (botany), BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 8, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4378717363 |
|---|---|
| doi | https://doi.org/10.3390/land12061142 |
| ids.doi | https://doi.org/10.3390/land12061142 |
| ids.openalex | https://openalex.org/W4378717363 |
| fwci | 20.49165878 |
| type | article |
| title | Enabling Regenerative Agriculture Using Remote Sensing and Machine Learning |
| biblio.issue | 6 |
| biblio.volume | 12 |
| biblio.last_page | 1142 |
| biblio.first_page | 1142 |
| topics[0].id | https://openalex.org/T13591 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.995199978351593 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1107 |
| topics[0].subfield.display_name | Forestry |
| topics[0].display_name | Pasture and Agricultural Systems |
| topics[1].id | https://openalex.org/T13388 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Rangeland and Wildlife Management |
| topics[2].id | https://openalex.org/T10439 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.989799976348877 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1105 |
| topics[2].subfield.display_name | Ecology, Evolution, Behavior and Systematics |
| topics[2].display_name | Climate change impacts on agriculture |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C2777904157 |
| concepts[0].level | 2 |
| concepts[0].score | 0.763309121131897 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3239189 |
| concepts[0].display_name | Grazing |
| concepts[1].id | https://openalex.org/C115540264 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6317484974861145 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2945560 |
| concepts[1].display_name | Biomass (ecology) |
| concepts[2].id | https://openalex.org/C2778053677 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5983447432518005 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30121 |
| concepts[2].display_name | Pasture |
| concepts[3].id | https://openalex.org/C6557445 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5643465518951416 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[3].display_name | Agronomy |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.49352800846099854 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C54286561 |
| concepts[5].level | 1 |
| concepts[5].score | 0.44470512866973877 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q397350 |
| concepts[5].display_name | Agroforestry |
| concepts[6].id | https://openalex.org/C2779247569 |
| concepts[6].level | 2 |
| concepts[6].score | 0.411419153213501 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2419334 |
| concepts[6].display_name | Tiller (botany) |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.37229233980178833 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/grazing |
| keywords[0].score | 0.763309121131897 |
| keywords[0].display_name | Grazing |
| keywords[1].id | https://openalex.org/keywords/biomass |
| keywords[1].score | 0.6317484974861145 |
| keywords[1].display_name | Biomass (ecology) |
| keywords[2].id | https://openalex.org/keywords/pasture |
| keywords[2].score | 0.5983447432518005 |
| keywords[2].display_name | Pasture |
| keywords[3].id | https://openalex.org/keywords/agronomy |
| keywords[3].score | 0.5643465518951416 |
| keywords[3].display_name | Agronomy |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.49352800846099854 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/agroforestry |
| keywords[5].score | 0.44470512866973877 |
| keywords[5].display_name | Agroforestry |
| keywords[6].id | https://openalex.org/keywords/tiller |
| keywords[6].score | 0.411419153213501 |
| keywords[6].display_name | Tiller (botany) |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.37229233980178833 |
| keywords[7].display_name | Biology |
| language | en |
| locations[0].id | doi:10.3390/land12061142 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738397068 |
| locations[0].source.issn | 2073-445X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-445X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Land |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2073-445X/12/6/1142/pdf?version=1685925975 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Land |
| locations[0].landing_page_url | https://doi.org/10.3390/land12061142 |
| locations[1].id | pmh:oai:doaj.org/article:fad0a5eb91384edca1960410f218118e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Land, Vol 12, Iss 6, p 1142 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/fad0a5eb91384edca1960410f218118e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5067528265 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1745-2700 |
| authorships[0].author.display_name | Michael Gbenga Ogungbuyi |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I129801699 |
| authorships[0].affiliations[0].raw_affiliation_string | Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7248, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I129801699 |
| authorships[0].institutions[0].ror | https://ror.org/01nfmeh72 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I129801699 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | University of Tasmania |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michael Gbenga Ogungbuyi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7248, Australia |
| authorships[1].author.id | https://openalex.org/A5026170729 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7464-6304 |
| authorships[1].author.display_name | Juan Pablo Guerschman |
| authorships[1].affiliations[0].raw_affiliation_string | Cibo Labs Pty Ltd., 15 Andrew St., Point Arkwright, QLD 4573, Australia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Juan P. Guerschman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Cibo Labs Pty Ltd., 15 Andrew St., Point Arkwright, QLD 4573, Australia |
| authorships[2].author.id | https://openalex.org/A5071180889 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5284-6428 |
| authorships[2].author.display_name | Andrew M. Fischer |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129801699 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7248, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I129801699 |
| authorships[2].institutions[0].ror | https://ror.org/01nfmeh72 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129801699 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | University of Tasmania |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Andrew M. Fischer |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7248, Australia |
| authorships[3].author.id | https://openalex.org/A5037304140 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3301-7063 |
| authorships[3].author.display_name | Richard A. Crabbe |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I153230381 |
| authorships[3].affiliations[0].raw_affiliation_string | Gulbali Institute, Charles Sturt University, Albury, NSW 2640, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I153230381 |
| authorships[3].institutions[0].ror | https://ror.org/00wfvh315 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I153230381 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Charles Sturt University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Richard Azu Crabbe |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Gulbali Institute, Charles Sturt University, Albury, NSW 2640, Australia |
| authorships[4].author.id | https://openalex.org/A5074828148 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2878-1094 |
| authorships[4].author.display_name | CL Mohammed |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I129801699 |
| authorships[4].affiliations[0].raw_affiliation_string | Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7248, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I129801699 |
| authorships[4].institutions[0].ror | https://ror.org/01nfmeh72 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I129801699 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | University of Tasmania |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Caroline Mohammed |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7248, Australia |
| authorships[5].author.id | https://openalex.org/A5048014874 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5091-7915 |
| authorships[5].author.display_name | Peter Scarth |
| authorships[5].affiliations[0].raw_affiliation_string | Cibo Labs Pty Ltd., 15 Andrew St., Point Arkwright, QLD 4573, Australia |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Peter Scarth |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Cibo Labs Pty Ltd., 15 Andrew St., Point Arkwright, QLD 4573, Australia |
| authorships[6].author.id | https://openalex.org/A5026287902 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | P.K. Tickle |
| authorships[6].affiliations[0].raw_affiliation_string | Cibo Labs Pty Ltd., 15 Andrew St., Point Arkwright, QLD 4573, Australia |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Phil Tickle |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Cibo Labs Pty Ltd., 15 Andrew St., Point Arkwright, QLD 4573, Australia |
| authorships[7].author.id | https://openalex.org/A5027341577 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Jason M. Whitehead |
| authorships[7].affiliations[0].raw_affiliation_string | Cape Herbert Pty Ltd., Blackstone Heights, TAS 7250, Australia |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jason Whitehead |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Cape Herbert Pty Ltd., Blackstone Heights, TAS 7250, Australia |
| authorships[8].author.id | https://openalex.org/A5067962267 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-7425-452X |
| authorships[8].author.display_name | Matthew Tom Harrison |
| authorships[8].countries | AU |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I129801699 |
| authorships[8].affiliations[0].raw_affiliation_string | Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7248, Australia |
| authorships[8].institutions[0].id | https://openalex.org/I129801699 |
| authorships[8].institutions[0].ror | https://ror.org/01nfmeh72 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I129801699 |
| authorships[8].institutions[0].country_code | AU |
| authorships[8].institutions[0].display_name | University of Tasmania |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Matthew Tom Harrison |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7248, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2073-445X/12/6/1142/pdf?version=1685925975 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-05-30T00:00:00 |
| display_name | Enabling Regenerative Agriculture Using Remote Sensing and Machine Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13591 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.995199978351593 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1107 |
| primary_topic.subfield.display_name | Forestry |
| primary_topic.display_name | Pasture and Agricultural Systems |
| related_works | https://openalex.org/W2045098037, https://openalex.org/W2348639077, https://openalex.org/W3043726816, https://openalex.org/W2043157248, https://openalex.org/W3040765089, https://openalex.org/W2597621161, https://openalex.org/W825711318, https://openalex.org/W4385622727, https://openalex.org/W3003283536, https://openalex.org/W2042569359 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/land12061142 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738397068 |
| best_oa_location.source.issn | 2073-445X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-445X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Land |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2073-445X/12/6/1142/pdf?version=1685925975 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Land |
| best_oa_location.landing_page_url | https://doi.org/10.3390/land12061142 |
| primary_location.id | doi:10.3390/land12061142 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738397068 |
| primary_location.source.issn | 2073-445X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-445X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Land |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2073-445X/12/6/1142/pdf?version=1685925975 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Land |
| primary_location.landing_page_url | https://doi.org/10.3390/land12061142 |
| publication_date | 2023-05-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3185857233, https://openalex.org/W3025768731, https://openalex.org/W1997744353, https://openalex.org/W2182689480, https://openalex.org/W3018306554, https://openalex.org/W3091345950, https://openalex.org/W2989732129, https://openalex.org/W3132369489, https://openalex.org/W2735618685, https://openalex.org/W3120721421, https://openalex.org/W2960796828, https://openalex.org/W1554418596, https://openalex.org/W54768593, https://openalex.org/W3127980783, https://openalex.org/W3106801021, https://openalex.org/W2020395972, https://openalex.org/W2895112044, https://openalex.org/W6658873666, https://openalex.org/W2950294063, https://openalex.org/W3192393044, https://openalex.org/W2930077704, https://openalex.org/W2188767531, https://openalex.org/W2058472204, https://openalex.org/W6657798854, https://openalex.org/W2043950171, https://openalex.org/W3109171706, https://openalex.org/W2917099423, https://openalex.org/W3004921674, https://openalex.org/W3199021611, https://openalex.org/W6662481121, https://openalex.org/W3128824007, https://openalex.org/W2252301886, https://openalex.org/W2138309079, https://openalex.org/W2982817363, https://openalex.org/W2065051496, https://openalex.org/W2800905579, https://openalex.org/W2981301710, https://openalex.org/W1987875596, https://openalex.org/W6674330103, https://openalex.org/W2806394060, https://openalex.org/W2604490161, https://openalex.org/W2117844186, https://openalex.org/W2742452911, https://openalex.org/W3113086366, https://openalex.org/W2892428434, https://openalex.org/W2884048788, https://openalex.org/W2025745000, https://openalex.org/W1977886272, https://openalex.org/W1976534896, https://openalex.org/W6697149382, https://openalex.org/W4284962077, https://openalex.org/W3202393785, https://openalex.org/W2277711654, https://openalex.org/W6640009495, https://openalex.org/W6673458489, https://openalex.org/W2031090843, https://openalex.org/W2092785500, https://openalex.org/W3164143705, https://openalex.org/W2794182550, https://openalex.org/W3023149787, https://openalex.org/W2936744010, https://openalex.org/W6785946851, https://openalex.org/W3103230033, https://openalex.org/W2029473420, https://openalex.org/W2033541309, https://openalex.org/W2296947293, https://openalex.org/W2092508646, https://openalex.org/W2095705004, https://openalex.org/W1909192784, https://openalex.org/W2049175330 |
| referenced_works_count | 70 |
| abstract_inverted_index.- | 326 |
| abstract_inverted_index.1 | 68, 76 |
| abstract_inverted_index.a | 152 |
| abstract_inverted_index.(3 | 229 |
| abstract_inverted_index.15 | 94 |
| abstract_inverted_index.3, | 89 |
| abstract_inverted_index.6, | 90 |
| abstract_inverted_index.9, | 91 |
| abstract_inverted_index.La | 170 |
| abstract_inverted_index.We | 150, 296 |
| abstract_inverted_index.an | 43 |
| abstract_inverted_index.as | 42 |
| abstract_inverted_index.at | 360 |
| abstract_inverted_index.by | 102 |
| abstract_inverted_index.in | 63, 293, 323 |
| abstract_inverted_index.is | 332 |
| abstract_inverted_index.kg | 284 |
| abstract_inverted_index.of | 2, 15, 24, 30, 39, 114, 366 |
| abstract_inverted_index.to | 19, 48, 82, 134, 160, 310, 334, 356 |
| abstract_inverted_index.we | 35, 319 |
| abstract_inverted_index.12, | 92 |
| abstract_inverted_index.903 | 283 |
| abstract_inverted_index.Our | 344 |
| abstract_inverted_index.The | 0, 271 |
| abstract_inverted_index.all | 182 |
| abstract_inverted_index.and | 8, 93, 126, 130, 147, 165, 189, 197, 213, 219, 235, 268, 279, 318, 342 |
| abstract_inverted_index.big | 5 |
| abstract_inverted_index.did | 175 |
| abstract_inverted_index.dry | 138, 145, 166 |
| abstract_inverted_index.for | 70, 106, 224, 240, 349 |
| abstract_inverted_index.ha) | 69 |
| abstract_inverted_index.has | 11 |
| abstract_inverted_index.not | 176 |
| abstract_inverted_index.the | 13, 28, 37, 241, 258, 277, 290, 294, 347, 364 |
| abstract_inverted_index.use | 14 |
| abstract_inverted_index.was | 282, 287, 307 |
| abstract_inverted_index.way | 348 |
| abstract_inverted_index.– | 322 |
| abstract_inverted_index.Nina | 171 |
| abstract_inverted_index.TSDM | 245, 281 |
| abstract_inverted_index.bare | 50 |
| abstract_inverted_index.both | 232 |
| abstract_inverted_index.data | 6 |
| abstract_inverted_index.each | 97 |
| abstract_inverted_index.from | 247, 257, 371 |
| abstract_inverted_index.high | 315 |
| abstract_inverted_index.less | 74, 288 |
| abstract_inverted_index.mean | 273 |
| abstract_inverted_index.more | 21, 205, 308 |
| abstract_inverted_index.root | 272 |
| abstract_inverted_index.soil | 336 |
| abstract_inverted_index.than | 67, 75, 252, 289 |
| abstract_inverted_index.that | 298, 321 |
| abstract_inverted_index.this | 324 |
| abstract_inverted_index.were | 61, 79, 112, 131, 222, 238, 250 |
| abstract_inverted_index.with | 96, 99, 157, 169, 181, 200, 226, 301, 329, 353 |
| abstract_inverted_index.(2000 | 109 |
| abstract_inverted_index.(less | 66 |
| abstract_inverted_index.Faced | 168 |
| abstract_inverted_index.Here, | 34 |
| abstract_inverted_index.TSDM, | 162, 186, 254 |
| abstract_inverted_index.afar. | 372 |
| abstract_inverted_index.allow | 83 |
| abstract_inverted_index.cloud | 3 |
| abstract_inverted_index.day). | 77 |
| abstract_inverted_index.error | 275 |
| abstract_inverted_index.given | 27 |
| abstract_inverted_index.grass | 116, 120 |
| abstract_inverted_index.green | 142, 164, 187 |
| abstract_inverted_index.lower | 251 |
| abstract_inverted_index.model | 155 |
| abstract_inverted_index.paves | 346 |
| abstract_inverted_index.rates | 105, 215 |
| abstract_inverted_index.sheep | 58 |
| abstract_inverted_index.short | 71, 302 |
| abstract_inverted_index.small | 64, 361, 369 |
| abstract_inverted_index.study | 345 |
| abstract_inverted_index.sward | 220 |
| abstract_inverted_index.total | 136 |
| abstract_inverted_index.under | 314 |
| abstract_inverted_index.using | 350 |
| abstract_inverted_index.which | 286 |
| abstract_inverted_index.while | 53 |
| abstract_inverted_index.(3–6 | 305 |
| abstract_inverted_index.DM/ha, | 285 |
| abstract_inverted_index.across | 269 |
| abstract_inverted_index.carbon | 338 |
| abstract_inverted_index.enable | 20 |
| abstract_inverted_index.field. | 295 |
| abstract_inverted_index.fields | 65, 370 |
| abstract_inverted_index.forced | 156 |
| abstract_inverted_index.future | 31 |
| abstract_inverted_index.ground | 51 |
| abstract_inverted_index.impact | 178 |
| abstract_inverted_index.likely | 333 |
| abstract_inverted_index.longer | 107 |
| abstract_inverted_index.matter | 139, 212 |
| abstract_inverted_index.remote | 16 |
| abstract_inverted_index.square | 274 |
| abstract_inverted_index.timely | 22 |
| abstract_inverted_index.within | 267, 368 |
| abstract_inverted_index.(TSDM), | 140 |
| abstract_inverted_index.3-month | 330 |
| abstract_inverted_index.Pasture | 217 |
| abstract_inverted_index.between | 276 |
| abstract_inverted_index.biomass | 85, 146, 188, 359 |
| abstract_inverted_index.climate | 32 |
| abstract_inverted_index.closely | 262 |
| abstract_inverted_index.examine | 36 |
| abstract_inverted_index.grazing | 45, 59, 174, 202, 300, 328 |
| abstract_inverted_index.greater | 239 |
| abstract_inverted_index.imagery | 159, 355 |
| abstract_inverted_index.improve | 335 |
| abstract_inverted_index.invoked | 151 |
| abstract_inverted_index.lighter | 103 |
| abstract_inverted_index.litter, | 208 |
| abstract_inverted_index.machine | 9, 153, 248, 259, 351 |
| abstract_inverted_index.matched | 263 |
| abstract_inverted_index.minimal | 227 |
| abstract_inverted_index.months) | 306 |
| abstract_inverted_index.organic | 211, 337 |
| abstract_inverted_index.pasture | 55, 84, 179, 312, 358 |
| abstract_inverted_index.periods | 108, 304 |
| abstract_inverted_index.sampled | 133 |
| abstract_inverted_index.scales, | 362 |
| abstract_inverted_index.sensing | 17 |
| abstract_inverted_index.showing | 184 |
| abstract_inverted_index.similar | 185 |
| abstract_inverted_index.spelled | 81 |
| abstract_inverted_index.surface | 210 |
| abstract_inverted_index.through | 339 |
| abstract_inverted_index.wallaby | 115 |
| abstract_inverted_index.whereas | 231 |
| abstract_inverted_index.(Themeda | 121 |
| abstract_inverted_index.15-month | 242 |
| abstract_inverted_index.DSE/ha). | 110 |
| abstract_inverted_index.However, | 191 |
| abstract_inverted_index.Paddocks | 78 |
| abstract_inverted_index.Pastures | 111 |
| abstract_inverted_index.Phalaris | 123 |
| abstract_inverted_index.adaptive | 44 |
| abstract_inverted_index.although | 255 |
| abstract_inverted_index.approach | 261 |
| abstract_inverted_index.biomass, | 143, 206 |
| abstract_inverted_index.biomass. | 149, 167 |
| abstract_inverted_index.compared | 98 |
| abstract_inverted_index.composed | 113 |
| abstract_inverted_index.conclude | 297 |
| abstract_inverted_index.controls | 100 |
| abstract_inverted_index.enabling | 363 |
| abstract_inverted_index.estimate | 135 |
| abstract_inverted_index.exposure | 52 |
| abstract_inverted_index.greatest | 223 |
| abstract_inverted_index.impacted | 195 |
| abstract_inverted_index.kangaroo | 119 |
| abstract_inverted_index.learning | 10, 154, 249, 260, 352 |
| abstract_inverted_index.material | 237 |
| abstract_inverted_index.measured | 253, 278, 292 |
| abstract_inverted_index.minimise | 49 |
| abstract_inverted_index.modelled | 280 |
| abstract_inverted_index.months), | 95, 230 |
| abstract_inverted_index.observed | 264 |
| abstract_inverted_index.pastures | 367 |
| abstract_inverted_index.quantify | 161, 357 |
| abstract_inverted_index.rainfall | 316 |
| abstract_inverted_index.recovery | 86, 303 |
| abstract_inverted_index.spelling | 228, 243, 331 |
| abstract_inverted_index.standing | 137, 141, 144, 163, 233 |
| abstract_inverted_index.stocking | 104 |
| abstract_inverted_index.strategy | 47 |
| abstract_inverted_index.thereof. | 216 |
| abstract_inverted_index.trampled | 148, 198, 236 |
| abstract_inverted_index.(Dactylis | 128 |
| abstract_inverted_index.(Phalaris | 124 |
| abstract_inverted_index.catalysed | 12 |
| abstract_inverted_index.cocksfoot | 127 |
| abstract_inverted_index.conducive | 309 |
| abstract_inverted_index.conducted | 62 |
| abstract_inverted_index.durations | 72 |
| abstract_inverted_index.emergence | 1 |
| abstract_inverted_index.enhancing | 209 |
| abstract_inverted_index.improving | 54 |
| abstract_inverted_index.increased | 340 |
| abstract_inverted_index.material, | 199 |
| abstract_inverted_index.potential | 38 |
| abstract_inverted_index.recovery. | 190 |
| abstract_inverted_index.satellite | 354 |
| abstract_inverted_index.senescent | 234 |
| abstract_inverted_index.species), | 118 |
| abstract_inverted_index.speculate | 320 |
| abstract_inverted_index.trampling | 204 |
| abstract_inverted_index.(typically | 73 |
| abstract_inverted_index.Sentinel-2 | 158 |
| abstract_inverted_index.analytics, | 7 |
| abstract_inverted_index.aquatica), | 125 |
| abstract_inverted_index.comprising | 88 |
| abstract_inverted_index.computing, | 4 |
| abstract_inverted_index.increasing | 207, 311 |
| abstract_inverted_index.litterfall | 196, 341 |
| abstract_inverted_index.management | 23, 46, 365 |
| abstract_inverted_index.production | 313 |
| abstract_inverted_index.trampling. | 343 |
| abstract_inverted_index.treatment. | 244 |
| abstract_inverted_index.treatments | 60, 183, 193, 203, 225 |
| abstract_inverted_index.triandra), | 122 |
| abstract_inverted_index.uniformity | 221 |
| abstract_inverted_index.(treatments | 87 |
| abstract_inverted_index.conditions, | 172, 317 |
| abstract_inverted_index.conditions. | 33 |
| abstract_inverted_index.environment | 325 |
| abstract_inverted_index.glomerata), | 129 |
| abstract_inverted_index.indicators, | 26 |
| abstract_inverted_index.predictions | 256 |
| abstract_inverted_index.prognostics | 246 |
| abstract_inverted_index.treatments. | 270 |
| abstract_inverted_index.uncertainty | 29 |
| abstract_inverted_index.variability | 266, 291 |
| abstract_inverted_index.regenerative | 173, 192, 299 |
| abstract_inverted_index.subsequently | 80 |
| abstract_inverted_index.technologies | 18 |
| abstract_inverted_index.characterised | 101 |
| abstract_inverted_index.decomposition | 214 |
| abstract_inverted_index.destructively | 132 |
| abstract_inverted_index.digestibility | 218 |
| abstract_inverted_index.productivity, | 180 |
| abstract_inverted_index.productivity. | 56 |
| abstract_inverted_index.significantly | 177, 194 |
| abstract_inverted_index.High-intensity | 57 |
| abstract_inverted_index.high-intensity | 201, 327 |
| abstract_inverted_index.spatiotemporal | 265 |
| abstract_inverted_index.sustainability | 25 |
| abstract_inverted_index.agriculture”, | 41 |
| abstract_inverted_index.“regenerative | 40 |
| abstract_inverted_index.(Austrodanthonia | 117 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5067962267 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I129801699 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.99401244 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |