Encoded Prior Sliced Wasserstein AutoEncoder for learning latent\n manifold representations Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2010.01037
While variational autoencoders have been successful in several tasks, the use\nof conventional priors are limited in their ability to encode the underlying\nstructure of input data. We introduce an Encoded Prior Sliced Wasserstein\nAutoEncoder wherein an additional prior-encoder network learns an embedding of\nthe data manifold which preserves topological and geometric properties of the\ndata, thus improving the structure of latent space. The autoencoder and\nprior-encoder networks are iteratively trained using the Sliced Wasserstein\ndistance. The effectiveness of the learned manifold encoding is explored by\ntraversing latent space through interpolations along geodesics which generate\nsamples that lie on the data manifold and hence are more realistic compared to\nEuclidean interpolation. To this end, we introduce a graph-based algorithm for\nexploring the data manifold and interpolating along network-geodesics in latent\nspace by maximizing the density of samples along the path while minimizing\ntotal energy. We use the 3D-spiral data to show that the prior encodes the\ngeometry underlying the data unlike conventional autoencoders, and to\ndemonstrate the exploration of the embedded data manifold through the network\nalgorithm. We apply our framework to benchmarked image datasets to demonstrate\nthe advantages of learning data representations in outlier generation, latent\nstructure, and geodesic interpolation.\n
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2010.01037
- https://arxiv.org/pdf/2010.01037
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287647544
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287647544Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2010.01037Digital Object Identifier
- Title
-
Encoded Prior Sliced Wasserstein AutoEncoder for learning latent\n manifold representationsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-02Full publication date if available
- Authors
-
Sanjukta Krishnagopal, Jacob BedrossianList of authors in order
- Landing page
-
https://arxiv.org/abs/2010.01037Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2010.01037Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2010.01037Direct OA link when available
- Concepts
-
Autoencoder, Geodesic, Manifold alignment, Manifold (fluid mechanics), Nonlinear dimensionality reduction, Interpolation (computer graphics), Artificial intelligence, Euclidean space, Computer science, Mathematics, Prior probability, Algorithm, Pattern recognition (psychology), Topology (electrical circuits), Deep learning, Dimensionality reduction, Image (mathematics), Geometry, Combinatorics, Mechanical engineering, Engineering, Bayesian probabilityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287647544 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2010.01037 |
| ids.openalex | https://openalex.org/W4287647544 |
| fwci | 0.0 |
| type | preprint |
| title | Encoded Prior Sliced Wasserstein AutoEncoder for learning latent\n manifold representations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9864000082015991 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T10719 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9817000031471252 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | 3D Shape Modeling and Analysis |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9810000061988831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C101738243 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8326459527015686 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[0].display_name | Autoencoder |
| concepts[1].id | https://openalex.org/C165818556 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7227627038955688 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q213488 |
| concepts[1].display_name | Geodesic |
| concepts[2].id | https://openalex.org/C153120616 |
| concepts[2].level | 4 |
| concepts[2].score | 0.622252881526947 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17068315 |
| concepts[2].display_name | Manifold alignment |
| concepts[3].id | https://openalex.org/C529865628 |
| concepts[3].level | 2 |
| concepts[3].score | 0.590251088142395 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1790740 |
| concepts[3].display_name | Manifold (fluid mechanics) |
| concepts[4].id | https://openalex.org/C151876577 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5222959518432617 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7049464 |
| concepts[4].display_name | Nonlinear dimensionality reduction |
| concepts[5].id | https://openalex.org/C137800194 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5066962838172913 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11713455 |
| concepts[5].display_name | Interpolation (computer graphics) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.49791526794433594 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C186450821 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47626158595085144 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17295 |
| concepts[7].display_name | Euclidean space |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4676864743232727 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4507071375846863 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C177769412 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4446985423564911 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[10].display_name | Prior probability |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4361693263053894 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4312686324119568 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C184720557 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3728829026222229 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7825049 |
| concepts[13].display_name | Topology (electrical circuits) |
| concepts[14].id | https://openalex.org/C108583219 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3563418984413147 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[14].display_name | Deep learning |
| concepts[15].id | https://openalex.org/C70518039 |
| concepts[15].level | 2 |
| concepts[15].score | 0.25229412317276 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[15].display_name | Dimensionality reduction |
| concepts[16].id | https://openalex.org/C115961682 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2263491153717041 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[16].display_name | Image (mathematics) |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.11841502785682678 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C114614502 |
| concepts[18].level | 1 |
| concepts[18].score | 0.09670767188072205 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[18].display_name | Combinatorics |
| concepts[19].id | https://openalex.org/C78519656 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[19].display_name | Mechanical engineering |
| concepts[20].id | https://openalex.org/C127413603 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[20].display_name | Engineering |
| concepts[21].id | https://openalex.org/C107673813 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[21].display_name | Bayesian probability |
| keywords[0].id | https://openalex.org/keywords/autoencoder |
| keywords[0].score | 0.8326459527015686 |
| keywords[0].display_name | Autoencoder |
| keywords[1].id | https://openalex.org/keywords/geodesic |
| keywords[1].score | 0.7227627038955688 |
| keywords[1].display_name | Geodesic |
| keywords[2].id | https://openalex.org/keywords/manifold-alignment |
| keywords[2].score | 0.622252881526947 |
| keywords[2].display_name | Manifold alignment |
| keywords[3].id | https://openalex.org/keywords/manifold |
| keywords[3].score | 0.590251088142395 |
| keywords[3].display_name | Manifold (fluid mechanics) |
| keywords[4].id | https://openalex.org/keywords/nonlinear-dimensionality-reduction |
| keywords[4].score | 0.5222959518432617 |
| keywords[4].display_name | Nonlinear dimensionality reduction |
| keywords[5].id | https://openalex.org/keywords/interpolation |
| keywords[5].score | 0.5066962838172913 |
| keywords[5].display_name | Interpolation (computer graphics) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.49791526794433594 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/euclidean-space |
| keywords[7].score | 0.47626158595085144 |
| keywords[7].display_name | Euclidean space |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.4676864743232727 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.4507071375846863 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/prior-probability |
| keywords[10].score | 0.4446985423564911 |
| keywords[10].display_name | Prior probability |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.4361693263053894 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.4312686324119568 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/topology |
| keywords[13].score | 0.3728829026222229 |
| keywords[13].display_name | Topology (electrical circuits) |
| keywords[14].id | https://openalex.org/keywords/deep-learning |
| keywords[14].score | 0.3563418984413147 |
| keywords[14].display_name | Deep learning |
| keywords[15].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[15].score | 0.25229412317276 |
| keywords[15].display_name | Dimensionality reduction |
| keywords[16].id | https://openalex.org/keywords/image |
| keywords[16].score | 0.2263491153717041 |
| keywords[16].display_name | Image (mathematics) |
| keywords[17].id | https://openalex.org/keywords/geometry |
| keywords[17].score | 0.11841502785682678 |
| keywords[17].display_name | Geometry |
| keywords[18].id | https://openalex.org/keywords/combinatorics |
| keywords[18].score | 0.09670767188072205 |
| keywords[18].display_name | Combinatorics |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2010.01037 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2010.01037 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2010.01037 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5002601106 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1556-404X |
| authorships[0].author.display_name | Sanjukta Krishnagopal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Krishnagopal, Sanjukta |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5081815930 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6288-0865 |
| authorships[1].author.display_name | Jacob Bedrossian |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Bedrossian, Jacob |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2010.01037 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-25T00:00:00 |
| display_name | Encoded Prior Sliced Wasserstein AutoEncoder for learning latent\n manifold representations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9864000082015991 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W2355395139, https://openalex.org/W3109610583, https://openalex.org/W2387045723, https://openalex.org/W2375518579, https://openalex.org/W117517268, https://openalex.org/W2944373987, https://openalex.org/W65619410, https://openalex.org/W2112684860, https://openalex.org/W4387713464, https://openalex.org/W2391701611 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2010.01037 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2010.01037 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2010.01037 |
| primary_location.id | pmh:oai:arXiv.org:2010.01037 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2010.01037 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2010.01037 |
| publication_date | 2020-10-02 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 106 |
| abstract_inverted_index.To | 101 |
| abstract_inverted_index.We | 25, 131, 161 |
| abstract_inverted_index.an | 27, 33, 38 |
| abstract_inverted_index.by | 119 |
| abstract_inverted_index.in | 6, 15, 117, 176 |
| abstract_inverted_index.is | 76 |
| abstract_inverted_index.of | 22, 49, 55, 71, 123, 153, 172 |
| abstract_inverted_index.on | 89 |
| abstract_inverted_index.to | 18, 136, 165, 169 |
| abstract_inverted_index.we | 104 |
| abstract_inverted_index.The | 58, 69 |
| abstract_inverted_index.and | 46, 93, 113, 149, 180 |
| abstract_inverted_index.are | 13, 62, 95 |
| abstract_inverted_index.lie | 88 |
| abstract_inverted_index.our | 163 |
| abstract_inverted_index.the | 9, 20, 53, 66, 72, 90, 110, 121, 126, 133, 139, 144, 151, 154, 159 |
| abstract_inverted_index.use | 132 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.data | 41, 91, 111, 135, 145, 156, 174 |
| abstract_inverted_index.end, | 103 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.more | 96 |
| abstract_inverted_index.path | 127 |
| abstract_inverted_index.show | 137 |
| abstract_inverted_index.that | 87, 138 |
| abstract_inverted_index.this | 102 |
| abstract_inverted_index.thus | 51 |
| abstract_inverted_index.Prior | 29 |
| abstract_inverted_index.While | 0 |
| abstract_inverted_index.along | 83, 115, 125 |
| abstract_inverted_index.apply | 162 |
| abstract_inverted_index.data. | 24 |
| abstract_inverted_index.hence | 94 |
| abstract_inverted_index.image | 167 |
| abstract_inverted_index.input | 23 |
| abstract_inverted_index.prior | 140 |
| abstract_inverted_index.space | 80 |
| abstract_inverted_index.their | 16 |
| abstract_inverted_index.using | 65 |
| abstract_inverted_index.which | 43, 85 |
| abstract_inverted_index.while | 128 |
| abstract_inverted_index.Sliced | 30, 67 |
| abstract_inverted_index.encode | 19 |
| abstract_inverted_index.latent | 56, 79 |
| abstract_inverted_index.learns | 37 |
| abstract_inverted_index.priors | 12 |
| abstract_inverted_index.space. | 57 |
| abstract_inverted_index.tasks, | 8 |
| abstract_inverted_index.unlike | 146 |
| abstract_inverted_index.Encoded | 28 |
| abstract_inverted_index.ability | 17 |
| abstract_inverted_index.density | 122 |
| abstract_inverted_index.encodes | 141 |
| abstract_inverted_index.energy. | 130 |
| abstract_inverted_index.learned | 73 |
| abstract_inverted_index.limited | 14 |
| abstract_inverted_index.network | 36 |
| abstract_inverted_index.of\nthe | 40 |
| abstract_inverted_index.outlier | 177 |
| abstract_inverted_index.samples | 124 |
| abstract_inverted_index.several | 7 |
| abstract_inverted_index.through | 81, 158 |
| abstract_inverted_index.trained | 64 |
| abstract_inverted_index.use\nof | 10 |
| abstract_inverted_index.wherein | 32 |
| abstract_inverted_index.compared | 98 |
| abstract_inverted_index.datasets | 168 |
| abstract_inverted_index.embedded | 155 |
| abstract_inverted_index.encoding | 75 |
| abstract_inverted_index.explored | 77 |
| abstract_inverted_index.geodesic | 181 |
| abstract_inverted_index.learning | 173 |
| abstract_inverted_index.manifold | 42, 74, 92, 112, 157 |
| abstract_inverted_index.networks | 61 |
| abstract_inverted_index.3D-spiral | 134 |
| abstract_inverted_index.algorithm | 108 |
| abstract_inverted_index.embedding | 39 |
| abstract_inverted_index.framework | 164 |
| abstract_inverted_index.geodesics | 84 |
| abstract_inverted_index.geometric | 47 |
| abstract_inverted_index.improving | 52 |
| abstract_inverted_index.introduce | 26, 105 |
| abstract_inverted_index.preserves | 44 |
| abstract_inverted_index.realistic | 97 |
| abstract_inverted_index.structure | 54 |
| abstract_inverted_index.additional | 34 |
| abstract_inverted_index.advantages | 171 |
| abstract_inverted_index.maximizing | 120 |
| abstract_inverted_index.properties | 48 |
| abstract_inverted_index.successful | 5 |
| abstract_inverted_index.the\ndata, | 50 |
| abstract_inverted_index.underlying | 143 |
| abstract_inverted_index.autoencoder | 59 |
| abstract_inverted_index.benchmarked | 166 |
| abstract_inverted_index.exploration | 152 |
| abstract_inverted_index.generation, | 178 |
| abstract_inverted_index.graph-based | 107 |
| abstract_inverted_index.iteratively | 63 |
| abstract_inverted_index.topological | 45 |
| abstract_inverted_index.variational | 1 |
| abstract_inverted_index.autoencoders | 2 |
| abstract_inverted_index.conventional | 11, 147 |
| abstract_inverted_index.autoencoders, | 148 |
| abstract_inverted_index.effectiveness | 70 |
| abstract_inverted_index.interpolating | 114 |
| abstract_inverted_index.latent\nspace | 118 |
| abstract_inverted_index.prior-encoder | 35 |
| abstract_inverted_index.the\ngeometry | 142 |
| abstract_inverted_index.to\nEuclidean | 99 |
| abstract_inverted_index.by\ntraversing | 78 |
| abstract_inverted_index.for\nexploring | 109 |
| abstract_inverted_index.interpolation. | 100 |
| abstract_inverted_index.interpolations | 82 |
| abstract_inverted_index.representations | 175 |
| abstract_inverted_index.to\ndemonstrate | 150 |
| abstract_inverted_index.demonstrate\nthe | 170 |
| abstract_inverted_index.interpolation.\n | 182 |
| abstract_inverted_index.generate\nsamples | 86 |
| abstract_inverted_index.minimizing\ntotal | 129 |
| abstract_inverted_index.network-geodesics | 116 |
| abstract_inverted_index.and\nprior-encoder | 60 |
| abstract_inverted_index.latent\nstructure, | 179 |
| abstract_inverted_index.network\nalgorithm. | 160 |
| abstract_inverted_index.underlying\nstructure | 21 |
| abstract_inverted_index.Wasserstein\ndistance. | 68 |
| abstract_inverted_index.Wasserstein\nAutoEncoder | 31 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.24207276 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |